scholarly journals Modeling and Simulation of Triple Coupled Cantilever Sensor for Mass Sensing Applications

Author(s):  
Nalluri Siddaiah ◽  
D.V. Rama Koti Reddy ◽  
Y. Bhavani Sankar ◽  
R. Anil Kumar ◽  
Hossein Pakdast

Cantilever sensors have been the growing attention in last decades and their use as a mass detector. This work presents design, modeling and analysis of Triple coupled cantilever(TCC) sensor using MEMS simulation software Comsol Multiphysics with critical  dimensions of 100μm length,20μm width and 2μm thickness. Simulations were performed based on finite element modeling techniques, where different resonant frequencies were observed for different modes of operation. It is also observed that the resonant frequency of the sensor decreases as some mass is applied on one particular cantilever. The various parameters greatly affecting the performance of TCC such as resonant frequency, dimensions, material and pressure or force applied on it.we also observed that while adding some mass on any one lateral cantilever, the resonant frequency of that respective mode reduced.

Author(s):  
Meng Ning ◽  
Zhi Wu ◽  
Lianjie Chen ◽  
Fan Zhang ◽  
Huitao Chen

Research and design an intelligent bed and chair integration system for assisting inconvenient mobility and aging population. The system consists of a removable detached wheelchair and a c-shaped bed with a fixed structure. The user can switch freely between the mobile wheelchair and the bed to meet the user's requirements of free movement and repositioning.Through the simulation software to analyze the movement characteristics of the bed backboard, the angle of the take-off and landing of the backboard and the sudden change of the take-off and abrupt angular velocity will cause the user to have dizziness and discomfort. In the case of determining the speed of the driving push rod, the relationship between mechanism parameters and installation parameters is the key to affect the lifting rate of the rear plate. Modeling and analysis of each mechanism is performed to determine the relationship between the mechanism parameters and the take-off and landing speed of the backplane. After optimizing the mechanism, the simulation is compared again to obtain the optimal solution. Finally, the optimal solution parameter is the final solution to improve the overall comfort of the nursing bed.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4758 ◽  
Author(s):  
Wilson Ombati Nyang’au ◽  
Andi Setiono ◽  
Maik Bertke ◽  
Harald Bosse ◽  
Erwin Peiner

Cantilever-based sensors have attracted considerable attention in the recent past due to their enormous and endless potential and possibilities coupled with their dynamic and unprecedented sensitivity in sensing applications. In this paper, we present a technique that involves depositing and vaporizing (at ambient conditions) a particle-laden water droplet onto a defined sensing area on in-house fabricated and commercial-based silicon microcantilever sensors. This process entailed the optimization of dispensing pressure and time to generate and realize a small water droplet volume (Vd = 49.7 ± 1.9 pL). Moreover, we monitored the water evaporation trends on the sensing surface and observed total evaporation time per droplet of 39.0 ± 1.8 s against a theoretically determined value of about 37.14 s. By using monodispersed particles in water, i.e., magnetic polystyrene particles (MPS) and polymethyl methacrylate (PMMA), and adsorbing them on a dynamic cantilever sensor, the mass and number of these particles were measured and determined comparatively using resonant frequency response measurements and SEM particle count analysis, respectively. As a result, we observed and reported monolayer particles assembled on the sensor with the lowest MPS particles count of about 19 ± 2.


Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 325 ◽  
Author(s):  
Yafei Xie ◽  
Ji Fan ◽  
Chun Zhao ◽  
Shitao Yan ◽  
Chenyuan Hu ◽  
...  

Capacitive sensing is a key technique to measure the test mass movement with a high resolution for space-borne gravitational wave detectors, such as Laser Interferometer Space Antenna (LISA) and TianQin. The capacitance resolution requirement of TianQin is higher than that of LISA, as the arm length of TianQin is about 15 times shorter. In this paper, the transfer function and capacitance measurement noise of the circuit are modeled and analyzed. Figure-of-merits, including the product of the inductance L and the quality factor Q of the transformer, are proposed to optimize the transformer and the capacitance measurement resolution of the circuit. The LQ product improvement and the resonant frequency augmentation are the key factors to enhance the capacitance measurement resolution. We fabricated a transformer with a high LQ product over a wide frequency band. The evaluation showed that the transformer can generate a capacitance resolution of 0.11 aF/Hz1/2 at a resonant frequency of 200 kHz, and the amplitude of the injection wave would be 0.6 V. This result supports the potential application of the proposed transformer in space-borne gravitational wave detection and demonstrates that it could relieve the stringent requirements for other parameters in the TianQin mission.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1777 ◽  
Author(s):  
Umar Khan ◽  
Adnan ◽  
Naveed Ahmed ◽  
Syed Tauseef Mohyud-Din ◽  
Yu-Ming Chu ◽  
...  

The flow of nanofluid between infinite parallel plates suspended by micro-cantilever sensors is significant. The analysis of such flows is a rich research area due to the variety of applications it has in chemical, biological and medical sciences. Micro-cantilever sensors play a significant role in accurately sensing different diseases, and they can be used to detect many hazardous and bio-warfare agents. Therefore, flow water and ethylene glycol (EG) composed by γ-nanoparticles is used. Firstly, the governing nanofluid model is transformed into two self-similar nanofluid models on the basis of their effective models. Then, a numerical method is adopted for solution purposes, and both the nanofluid models are solved. To enhance the heat transfer characteristics of the models, the effective Prandtl model is ingrained in the energy equation. The velocity F’(η) decreases with respect to the suction of the fluid, because more fluid particles drags on the surface for suction, leading to an abrupt decrement in F’(η). The velocity F’(η) increases for injection of the fluid from the upper end, and therefore the momentum boundary layer region is prolonged. A high volume fraction factor is responsible for the denser characteristics of the nanofluids, due to which the fluids become more viscous, and the velocity F’(η) drops abruptly, with the magnetic parameters favoring velocity F’(η). An increase in temperature β ( η ) of Al2O3-H2O and γAl2O3-C2H6O2 nanofluids was reported at higher fraction factors with permeable parameter effects. Finally, a comparative analysis is presented by restricting the flow parameters, which shows the reliability of the study.


Author(s):  
Prasath Mahendiran ◽  
Bommaian Balasubramanian ◽  
Muralidhar Manavalan ◽  
Adithya Rao

This paper presents the overview and capability of design Environment for performance modeling and analysis of aero engine lubrication systems. The design environment is implemented as an intuitive and easy to use toolbox implemented within the commercial off-the-shelf (COTS) simulation software environment MATLAB/Simulink®. The toolbox consists of a library of predefined reusable/generic lubrication system components like flow resistance elements, pumps and orifice. The component behavior is modeled mathematically using first principles and component characteristics. The developed components have been extensively verified & validated with actual hardware test data covering multiple test points in the flight envelope and also different failure modes of the system. The verification & validation methodology and the results of the component tests, is not the subject of the paper. The aero engine lubrication system is modeled by connecting the components drawn from the library to form a network consisting of nodes and flow paths. The solver implemented computes the unknown pressure and flow values in the lubrication circuit. The design environment has been used to perform steady state performance analysis of aero engine lubrication system. It has additional capability to perform parametric studies, trade studies, design exploration, analyzing simulation results and automated report generation, which will be described in the paper. The flexible software architecture and modular programming techniques has delivered the significant benefit of component models reuse. The generic nature of the toolbox can be exploited to perform system modeling and analysis of any hydraulic system.


Author(s):  
Miheer Gurjar ◽  
Nader Jalili

This paper presents a mathematical model of a self-sensing microcantilever beam for mass sensing applications. Equations of motion are derived for a microcantilever beam with a tip mass and a piezoelectric patch actuator deposited on the cantilever surface. In the self-sensing mode, the same piezoelectric patch is used for actuation and sensing. Selfinduced voltage signals, which are extracted using a capacitive bridge mechanism, reveal frequency information of the vibrating beam, which in turn, reveals the particle mass. Equations of motion are obtained using the extended Hamilton's principle by considering the microcantilever as a distributed- parameters system. Two methods to estimate the unknown tip mass are presented. The first one is based on an inverse solution to the characteristic equation problem, while the second method uses a constraint-based optimization approach to estimate the tip mass. To improve the self-sensing performance, the need for adaptive estimation of the piezoelectric capacitance is stressed and an online estimation mechanism is presented. Simulations are presented to demonstrate the ability of the model to detect tip mass up to 0.1 femtogram (1 femtogram = 10-15 gm). Further simulation results demonstrate the working of constraint optimization method and adaptive self-sensing mechanism.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2582 ◽  
Author(s):  
Joël Bafumba Liseli ◽  
Joël Agnus ◽  
Philippe Lutz ◽  
Micky Rakotondrabe

Charge-based Self-Sensing Actuation (SSA) is a cost and space-saving method for accurate piezoelectric based-actuator positioning. However, the performance of its implementation resides in the choice of its geometry and the properties of the constituent materials. This paper intends to analyze the charge-based SSA’s performances dependence on the aforementioned parameters and properties for a piezoelectric cantilever. A model is established for this type of Piezoelectric Actuator (PEA), and a multi-objective function is defined. The multi-objective function consists of the weighted actuator and sensor objective functions of the PEA. The analytical optimization approach introduced herein aims to assess the evolution of the defined multi-objective function across a defined set of geometrical parameters and material properties and highlights the existence of a subset of solutions for an optimal charge-based SSA’s implementation. The commercially-available finite element analysis software, COMSOL Multiphysics, is used on the parametric model of the given structure to validate the analytical model. Then, experiments are conducted to corroborate the numerical and analytical modeling and analysis.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2508
Author(s):  
Wilson Ombati Nyang’au ◽  
Andi Setiono ◽  
Angelika Schmidt ◽  
Harald Bosse ◽  
Erwin Peiner

Liquid-borne particles sampling and cantilever-based mass detection are widely applied in many industrial and scientific fields e.g., in the detection of physical, chemical, and biological particles, and disease diagnostics, etc. Microscopic analysis of particles-adsorbed cantilever-samples can provide a good basis for measurement comparison. However, when a particles-laden droplet on a solid surface is vaporized, a cluster-ring deposit is often yielded which makes particles counting difficult or impractical. Nevertheless, in this study, we present an approach, i.e., on-cantilever particles imprinting, which effectively defies such odds to sample and deposit countable single particles on a sensing surface. Initially, we designed and fabricated a triangular microcantilever sensor whose mass m0, total beam-length L, and clamped-end beam-width w are equivalent to that of a rectangular/normal cantilever but with a higher resonant frequency (271 kHz), enhanced sensitivity (0.13 Hz/pg), and quality factor (~3000). To imprint particles on these cantilever sensors, various calibrated stainless steel dispensing tips were utilized to pioneer this study by dipping and retracting each tip from a small particle-laden droplet (resting on a hydrophobic n-type silicon substrate), followed by tip-sensor-contact (at a target point on the sensing area) to detach the solution (from the tip) and adsorb the particles, and ultimately determine the particles mass concentration. Upon imprinting/adsorbing the particles on the sensor, resonant frequency response measurements were made to determine the mass (or number of particles). A minimum detectable mass of ~0.05 pg was demonstrated. To further validate and compare such results, cantilever samples (containing adsorbed particles) were imaged by scanning electron microscopy (SEM) to determine the number of particles through counting (from which, the lowest count of about 11 magnetic polystyrene particles was obtained). The practicality of particle counting was essentially due to monolayer particle arrangement on the sensing surface. Moreover, in this work, the main measurement process influences are also explicitly examined.


Sign in / Sign up

Export Citation Format

Share Document