scholarly journals Analysis Air Cooling Mechanism for Photovoltaic Panel by Solar Simulator

Author(s):  
Mohd. Irwan Yusoff ◽  
Leow Wai Zhe ◽  
Muhammad Irwanto Misrun ◽  
Mohd Fareq Abd. Malek ◽  
Amelia Abdul Razak ◽  
...  

Measurement the outdoor efficiency of photovoltaic (PV) panels is essential, but it is not likely an exceptional circumstance at any given moment is always repeating itself. A solar simulator was designed and fabricated for the purpose of analyzing the performance of PV panel with and without an air cooling mechanism in indoor test. Twenty units of 500 W halogen lamps with build-in reflector support by the steel structure holder act as a natural sunlight. The uniformity of the solar radiation was measured in the test area. Two units of PV panel with same characteristics were experimental in three sets of uniformity of solar radiation, which are 620, 821 and 1016 W/m². The operating temperature of PV panel with an air cooling mechanism can be decreased 2-3 ˚C compared to PV panel reference. The PV panel with an air cooling mechanism can be increased in 3-7 % of maximum power output based on solar radiation. An overall method and procedure of the measurement by the solar simulator are discussed and proposed.

Author(s):  
Y.M. Irwan ◽  
A.R. Amelia ◽  
M. Irwanto ◽  
W.Z. Leow ◽  
Z. Syafiqah ◽  
...  

An increasing efficiency of the solar system can be improved by using hybrid cooling mechanism. This paper presents the impact of hybrid cooling mechanism on PV panel under indoor testing with varying solar intensity. Thus, the fabrication of a solar simulator for indoor testing reacts as the space solar radiation is described. The performance of PV panel which attached to a hybrid cooling mechanism compared with PV panel without cooling mechanism under variation of average solar radiation. Experimental tests were carried out for various average solar radiations by varying the number of lamps and/or the lamp-to-area distance. Without altering the spectral distribution, the characteristic of current-voltage of PV panel was analysed under average solar radiation which varied from 202 W/m<sup>2</sup> to 1003 W/m<sup>2</sup>. As the result, the PV panel with hybrid cooling system explored to generate more power output with decreasing in PV panel temperature. About 15.79 % increment of power output generated by PV panel with cooling at maximum average solar radiation. Furthermore, the PV panel temperature also can be decreased about 10.28 % respectively. The combination of DC fan and water pump as cooling mechanism plays an important role in generating efficient power output from PV panel.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Zainal Arifin ◽  
Dominicus Danardono Dwi Prija Tjahjana ◽  
Syamsul Hadi ◽  
Rendy Adhi Rachmanto ◽  
Gabriel Setyohandoko ◽  
...  

An increase in the operating temperature of photovoltaic (PV) panels caused by high levels of solar irradiation can affect the efficiency and lifespan of PV panels. This study uses numerical and experimental analyses to investigate the reduction in the operating temperature of PV panels with an air-cooled heat sink. The proposed heat sink was designed as an aluminum plate with perforated fins that is attached to the back of the PV panel. A comprehensive computational fluid dynamics (CFD) simulation was conducted using the software ANSYS Fluent to ensure that the heat sink model worked properly. The influence of heat sinks on the heat transfer between a PV panel and the circulating ambient air was investigated. The results showed a substantial decrease in the operating temperature of the PV panel and an increase in its electrical performance. The CFD analysis in the heat sink model with an air flow velocity of 1.5 m/s and temperature of 35°C under a heat flux of 1000 W/m2 showed a decrease in the PV panel’s average temperature from 85.3°C to 72.8°C. As a consequence of decreasing its temperature, the heat sink increased the open-circuit photovoltage (VOC) and maximum power point (PMPP) of the PV panel by 10% and 18.67%, respectively. Therefore, the use of aluminum heat sinks could provide a potential solution to prevent PV panels from overheating and may indirectly lead to a reduction in CO2 emissions due to the increased electricity production from the PV system.


Author(s):  
Leow Wai Zhe ◽  
Y.M. Irwan ◽  
M. Irwanto ◽  
A.R. Amelia ◽  
I. Safwati

The aim of this project is to investigate the performance of photovoltaic (PV) panel influence by wind speed in Kangar, Perlis, Malaysia. A low conversion energy efficiency of the PV panel is the major problem of a PV application system. The PV panel is absorbed solar irradiance minor converted into electrical energy, and the rest is converted into heat energy. Therefore, the heat energy generated by the PV panel is increased in its operating temperature. However, PV panel is necessary to operate them at the low operating temperatures to keep the PV panel electrical efficiency at an acceptable level. In this experiment, one unit of the PV panel was limited wind flow over its surface and the other one PV panel was operated in the normal condition. The operating temperature of the PV panel with wind speed is less than the PV panel without wind speed. This is due to wind flow over the surface of the PV panel can enhance heat extraction from the PV panel. Hence, PV panel with wind speed can generate a higher output power than that without wind speed. This improvement output performance of PV panel will have an important contribution to PV application systems.


2019 ◽  
Vol 22 (1) ◽  
pp. 22-30
Author(s):  
Farag Mahel Mohammed ◽  
Jamal Abdul-Kareem Mohammed ◽  
Mustafa Abdul-Sayed Sanad

The efficiency of the solar PV panel decreases significantly as the PV panel’s operating temperature increases. There are many cooling techniques might be suitably deal with this problem to enhance the solar panel efficiency. The presented cooling technique used for solving the PV panel’s temperature elevation is an active close loop cooling system, accomplished using two water glazing chambers made from acrylic glass placed at the PV panel surfaces (rear and front). These champers are utilized for cooling down the PV cell’s temperature, as well as filtering the useful sunlight spectrum. The results show that the PV cell’s temperature reduction by 50.06% with using the cooling system, this leads to an average increase in the maximum output power and consequently electrical efficiency of the PV panel by about 12.69% and 14.2%, respectively.


Author(s):  
A.R. Amelia ◽  
Y.M. Irwan ◽  
M. Irwanto ◽  
W.Z. Leow ◽  
N. Gomesh ◽  
...  

<span>Photovoltaic (PV) panel is the heart of solar system generally has a low energy conversion efficiency available in the market. PV panel temperature control is the main key to keeping the PV panel operate efficiently. This paper presented the great influenced of the cooling system in reduced PV panel temperature. A cooling system has been developed based on forced convection induced by DC fan as cooling mechanism. DC fan was attached at the back side of PV panel will extract the heat energy distributed and cool down the PV panel. The working operation of DC fan controlled by PIC18F4550 microcontroller which depending on the average value of PV panel temperature. Experiments were performed with and without cooling mechanism attached at the backside PV panel. The whole PV system was subsequently evaluated in outdoor weather conditions. As a result, it is concluded that there is an optimum number of DC fans required as cooling mechanism in producing efficient electrical output from a PV panel. The study clearly shows how cooling mechanism improves the performance of PV panel at the hot climatic weather. In short, the reduction of PV panel temperature is very important to keep its performance operated efficiently.</span>


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 62
Author(s):  
Mohammed Alktranee ◽  
Péter Bencs

<p>An increase in the temperature of the photovoltaic (PV) cells is a significant issue in most PV panels application. About 15–20% of solar radiation is converted to electricity by PV panels, and the rest converts to heat that affects their efficiency. This paper studies the effects of temperature distribution on the PV panel at different solar radiation values, temperatures under different operation conditions in January and July. A 3D model of the PV panel was simulated with ANSYS software, depending on the various values of temperatures and solar radiation values obtained using mathematic equations. The simulation results indicate that PV panel temperature lowered with solar radiation values lower in January, and the temperature was homogeneous on the PV panel surface. An increase in the solar radiation value and temperature in July led causes heating of the PV panel with observed a convergence of the maximum and average temperature of the panel. Thus, the PV panel temperature increase is directly proportional to the solar radiation increase that causes lower performance. Cooling the PV panel by passive or active cooling represents the optimum option to enhance their performance and avoid increasing the PV cells' temperature at temperature increase.</p>


2020 ◽  
Vol 26 (8) ◽  
pp. 1-13 ◽  
Author(s):  
Duaa Jassim Hasan ◽  
Ammar A. Farhan

The performance of photovoltaic (PV) panel having staggered metal foam fins was examined experimentally in Baghdad, Iraq. Three staggered metal foam fin configurations attached to the backside of the PV panel were studied. The measured parameters were front and back surfaces temperature, open voltage and current circuits, maximum power, and PV efficiency. It was noted that the maximum electrical efficiency enhancement was 4.7% for staggered metal foam fins (case III) than the reference PV panel. The operating temperature of the cell was increased when the value of solar intensity was high. Thereby, the electrical efficiency was decreased. It was found that the metal foam fins decreased the PV temperature by 2-3 oC.


Author(s):  
Nur Farhana Mohd Razali ◽  
Ahmad Fudholi ◽  
Mohd Hafidz Ruslan ◽  
Kamaruzzaman Sopian

<span lang="EN-US">Solar radiation can be converted to the electrical energy and thermal energy by photovoltaic panel and solar collector. In this experiment, PV/T collector was designed, fabricated and tested its performance. The experiment conducted on PV/T collector with water flow at mass flow rate 0.012 kg/s to 0.0255 kg/s. The water flow with the stainless stell absorber help the PV/T collector in increasing the convection of thermal heat transfer. The power output increase with increase of radiation. The efficiency of PVT varies with different intensity of radiation which stated in this experiment for 750 W/m<sup>2</sup> and 900 W/m<sup>2</sup>. The analysis of energy and exergy are excuted and results show energy output for water based PV/T collector are 346 W for solar radiation 700 W/m<sup>2</sup> and 457 W for solar radiation 900 W/m<sup>2</sup>.  Meanwhile the total exergy output compared to the PV panel without stainless stell absorber, which the exergy increased by 22.48% for 700 W/m<sup>2</sup> and 20.87% for 900 W/m<sup>2</sup>.</span>


2021 ◽  
Vol 12 (1) ◽  
pp. 51-56
Author(s):  
Nurul Shahirah Rukman ◽  
Ahmad Fudholi ◽  
Putri Adia Utari ◽  
Cheku Nurul Aisyah ◽  
Andri Joko Purwanto ◽  
...  

A photovoltaic (PV) system integrated with a bi-fluid cooling mechanism, which is known as photovoltaic thermal (PVT) system, was investigated. The electrical characteristics of flexible solar panel were evaluated for PV and PV with bi-fluid (air and water) cooling system. The integration of monocrystalline flexible solar panel into both systems was tested under a fixed solar radiation of 800 W/m2. A total of 0.04–0.10 kg/s of air flow was utilised in PV with cooling system with a fixed water mass flow rate of 0.025 kg/s. The efficiencies of flexible panel for PV and PV with cooling system were explored. For PV with bi-fluid flow, the highest obtained efficiency of module was 15.95% when 0.08 kg/s of air and 0.025 kg/s of water were allowed to flow through the cooling system. Compared with PV without cooling mechanism, the highest efficiency of module was 13.35% under same solar radiation. Current–voltage and power graphs were also plotted to present the electrical characteristics (current, voltage and power) generated by both systems.


Solar energy is the important energy source for future. Lot of devices are used for capture the energy from solar radiation and convert into useful form of energy. Solar PV (Photovoltaic) Panels are the promising devices convert the solar radiation into electrical form of energy. The partial portion of solar energy may be converted into electricity remaining in the form heat energy. Solar PV panel performance varies with temperature increase. The PV panel temperature has effect on power and voltage. Due to increase of temperature, the photovoltaic solar cells efficiency may be decreased. The life of the panel also will be decreased. In this paper how the heat energy received from solar radiation in the form of temperature affect the solar panel efficiency was analysed by experiment conducted with solar PV panel of 50W in the real outdoor environmental condition.


Sign in / Sign up

Export Citation Format

Share Document