scholarly journals The Effect of Staggered porous fins on the performance of Photovoltaic panel in Baghdad

2020 ◽  
Vol 26 (8) ◽  
pp. 1-13 ◽  
Author(s):  
Duaa Jassim Hasan ◽  
Ammar A. Farhan

The performance of photovoltaic (PV) panel having staggered metal foam fins was examined experimentally in Baghdad, Iraq. Three staggered metal foam fin configurations attached to the backside of the PV panel were studied. The measured parameters were front and back surfaces temperature, open voltage and current circuits, maximum power, and PV efficiency. It was noted that the maximum electrical efficiency enhancement was 4.7% for staggered metal foam fins (case III) than the reference PV panel. The operating temperature of the cell was increased when the value of solar intensity was high. Thereby, the electrical efficiency was decreased. It was found that the metal foam fins decreased the PV temperature by 2-3 oC.

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Mojtaba Nateqi ◽  
Mehran Rajabi Zargarabadi ◽  
Roohollah Rafee

AbstractIn this study, a spray cooling system is experimentally investigated to increase the photovoltaic panel efficiency. Cooling of photovoltaic panels is one of the important parameters that affects the PV panel performance. In this experiment the effects of spray angle, nozzles to PV panel distance, number of nozzles, and pulsating water spray on the PV panel performance are investigated. For this purpose, an experimental setup was made. The spray angles varied from 15° to 50°. The comparison between the spray angles shows that by decreasing the spray angle to 15° increases the electrical efficiency of PV panel to 19.78% and simultaneously the average PV panel temperature decreases from 64 (for non-cooled PV) to 24 °C. Also, nozzle to PV panel distance was changed from 10 to 50 cm. The best result was obtained for the lowest distance by 25.86% increase in power output. Study of various frequency also show that due to the surface evaporation and the intensity of the radiation, increasing the water spraying frequency can increase or decrease the electrical efficiency. The On–Off water spray system results show that the maximum increase in efficiency was obtained with frequency of 0.2 Hz which it was 16.84%. Water consumption also decreased to half.


Author(s):  
Leow Wai Zhe ◽  
Y.M. Irwan ◽  
M. Irwanto ◽  
A.R. Amelia ◽  
I. Safwati

The aim of this project is to investigate the performance of photovoltaic (PV) panel influence by wind speed in Kangar, Perlis, Malaysia. A low conversion energy efficiency of the PV panel is the major problem of a PV application system. The PV panel is absorbed solar irradiance minor converted into electrical energy, and the rest is converted into heat energy. Therefore, the heat energy generated by the PV panel is increased in its operating temperature. However, PV panel is necessary to operate them at the low operating temperatures to keep the PV panel electrical efficiency at an acceptable level. In this experiment, one unit of the PV panel was limited wind flow over its surface and the other one PV panel was operated in the normal condition. The operating temperature of the PV panel with wind speed is less than the PV panel without wind speed. This is due to wind flow over the surface of the PV panel can enhance heat extraction from the PV panel. Hence, PV panel with wind speed can generate a higher output power than that without wind speed. This improvement output performance of PV panel will have an important contribution to PV application systems.


Author(s):  
Vahid Jafari Fesharaki ◽  
Farid Sheikholeslam ◽  
Mohammad Reza Jahed Motlagh

AbstractBecause of nonlinear I-V curves of photovoltaic panels, a maximum power point tracking (MPPT) technique is necessary to absorb maximum power. In this article state-space averaging method is utilized to express behavior of boost chopper converter. To generate the best operating point (PV panel desired voltage), incremental conductance is used. A Robust feedback linearization controller is proposed to deliver the PV panel to maximum power point. The controller is robust to environment variations, load uncertainties and load voltage disturbances. Stability of proposed controller is proved based on Lyapunov theorem. A boost chopper is used between PV panel and load to realize proposed MPPT technique. Boost chopper parameters are designed properly to operate converter in continues conduction mode (CCM). To evaluate MPPT technique some simulations in irradiance variation, temperature variation, load variation and load voltage disturbance are presented and discussed.


2020 ◽  
Vol 182 ◽  
pp. 03005
Author(s):  
Rodney H.G. Tan ◽  
Chee Kang Er ◽  
Sunil G. Solanki

This paper presents the circuitry modeling of the solar photovoltaic MPPT lead-acid battery charge controller for the standalone system in MATLAB/Simulink environment. A buck topology is utilized as a DC-DC converter for the charge controller implementation. The maximum power of the photovoltaic panel is tracked by the Perturb and Observe MPPT algorithm. The battery charge controller charges the lead-acid battery using a three-stage charging strategy. The three charging stages include the MPPT bulk charge, constant voltage absorption charge, and float charge stage. The performance analysis of the model is carried out in the following aspects, there are MPPT tracking performance, battery charging performance and overall charge controller efficiency performance are benchmarked with commercial MPPT charge controller for validation. The performance result shows that the MPPT is capable to track to the PV panel maximum point at any solar irradiance variation within 0.5 seconds with maximum power tracking efficiency up to 99.9 %. The three-stage charging strategy also successfully demonstrated. The overall charge controller average efficiency achieved up to 98.3 % which matches many high end commercial solar PV MPPT charge controller product specifications. This validated model contributes to a better sizing of PV panel and battery energy storage for the small and medium standalone PV system.


2019 ◽  
Vol 22 (1) ◽  
pp. 22-30
Author(s):  
Farag Mahel Mohammed ◽  
Jamal Abdul-Kareem Mohammed ◽  
Mustafa Abdul-Sayed Sanad

The efficiency of the solar PV panel decreases significantly as the PV panel’s operating temperature increases. There are many cooling techniques might be suitably deal with this problem to enhance the solar panel efficiency. The presented cooling technique used for solving the PV panel’s temperature elevation is an active close loop cooling system, accomplished using two water glazing chambers made from acrylic glass placed at the PV panel surfaces (rear and front). These champers are utilized for cooling down the PV cell’s temperature, as well as filtering the useful sunlight spectrum. The results show that the PV cell’s temperature reduction by 50.06% with using the cooling system, this leads to an average increase in the maximum output power and consequently electrical efficiency of the PV panel by about 12.69% and 14.2%, respectively.


Author(s):  
Mohd. Irwan Yusoff ◽  
Leow Wai Zhe ◽  
Muhammad Irwanto Misrun ◽  
Mohd Fareq Abd. Malek ◽  
Amelia Abdul Razak ◽  
...  

Measurement the outdoor efficiency of photovoltaic (PV) panels is essential, but it is not likely an exceptional circumstance at any given moment is always repeating itself. A solar simulator was designed and fabricated for the purpose of analyzing the performance of PV panel with and without an air cooling mechanism in indoor test. Twenty units of 500 W halogen lamps with build-in reflector support by the steel structure holder act as a natural sunlight. The uniformity of the solar radiation was measured in the test area. Two units of PV panel with same characteristics were experimental in three sets of uniformity of solar radiation, which are 620, 821 and 1016 W/m². The operating temperature of PV panel with an air cooling mechanism can be decreased 2-3 ˚C compared to PV panel reference. The PV panel with an air cooling mechanism can be increased in 3-7 % of maximum power output based on solar radiation. An overall method and procedure of the measurement by the solar simulator are discussed and proposed.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2185 ◽  
Author(s):  
Markku Järvelä ◽  
Seppo Valkealahti

Partly cloudy days possess two characteristics that can significantly increase the photovoltaic (PV) generator power: the operating temperature of the PV panels can cool down during the shade periods, and the irradiance can be enhanced due to the cloud enhancement phenomenon. If an overirradiance event is preceded by a long shade period, the maximum power of a PV generator can occasionally be much higher than the nominal nameplate power. During the overpower events, the inverter is operating in power-limiting mode whereby the operating voltage is increased to decrease the power of the PV generator. We created a simulation model of a 31.9 kW PV generator and used 12 months of irradiance and PV panel temperature measurement data to analyze its operation. We analyzed the PV generator power during the overirradiance events and applied various static power limits to calculate the operating voltage ranges in case of power curtailment. During the observation period, the maximum power produced by the PV generator was 1.42 times its nominal power. The duration of the overpower events was up to several minutes, but the typical duration was only some tens of seconds. The strongest overpower events occur seldom and their duration is only some seconds. Due to the overpower events, the operating voltage may receive high values, especially if the DC-to-AC power ratio is large.


2021 ◽  
Author(s):  
Priyanka Jagtap ◽  
Shradha Kakade ◽  
Pooja Pawar ◽  
Swapnali Patil ◽  
Swapnil Pawar ◽  
...  

In this paper maximum power point tracker battery charger is proposed for extracting maximum power from a photovoltaic panel to charge the battery. The output power of the PV system continuously varies with change in irradiance and temperature. It is a very important to improve the efficiency of solar panel. There are number of maximum power point tracking (MPPT) methods available to operate the PV system at maximum power point. The proposed system has used perturb & observe (P&O) MPPT algorithm for the design and implementation. And also describes thermoelectric power generation from waste heat from PV panel, utilizing generators that can convert heat energy directly to electrical energy.


2020 ◽  
Vol 22 (4) ◽  
pp. 1439-1452
Author(s):  
Mohamed L. Benlekkam ◽  
Driss Nehari ◽  
Habib Y. Madani

AbstractThe temperature rise of photovoltaic’s cells deteriorates its conversion efficiency. The use of a phase change material (PCM) layer linked to a curved photovoltaic PV panel so-called PV-mirror to control its temperature elevation has been numerically studied. This numerical study was carried out to explore the effect of inner fins length on the thermal and electrical improvement of curved PV panel. So a numerical model of heat transfer with solid-liquid phase change has been developed to solve the Navier–Stokes and energy equations. The predicted results are validated with an available experimental and numerical data. Results shows that the use of fins improve the thermal load distribution presented on the upper front of PV/PCM system and maintained it under 42°C compared with another without fins and enhance the PV cells efficiency by more than 2%.


Author(s):  
Lahcen El Mentaly ◽  
Abdellah Amghar ◽  
Hassan Sahsah

Background: The solar field on our planet is inexhaustible, which favors the use of photovoltaic electricity which generates no nuisance: no greenhouse gases, no waste. Methods: It is a high value-added energy that is produced directly at the place of consumption through photovoltaic (PV) solar panels. Notwithstanding these advantages, the maximum power depends strongly on solar irradiation and temperature, which means that a Maximum Power Point Tracking (MPPT) controller must be inserted between the PV panel and the load in order to follow the Maximum Power Point (MPP) continuously and in real time. In this work, MPP’s behavior was simulated at different temperatures and solar irradiations using seven techniques which identify the MPP by different methods. Results: The novelty of this work is that the seven MPPT methods were compared according to a very selective criterion which is the MPPT efficiency as well as a purely digital duty cycle control without using the PI controller. The simulation under the PSIM software shows that the FLC, TP, FSCC, TG, HC and IC methods have almost the same efficiency of 99%, whereas the FOCV method had a low efficiency of 96%. Conclusion: This makes it possible to conclude that the best methods are FLC, HC and IC because they use fewer sensors compared to the rest.


Sign in / Sign up

Export Citation Format

Share Document