scholarly journals Bi-fluid cooling effect on electrical characteristics of flexible photovoltaic panel

2021 ◽  
Vol 12 (1) ◽  
pp. 51-56
Author(s):  
Nurul Shahirah Rukman ◽  
Ahmad Fudholi ◽  
Putri Adia Utari ◽  
Cheku Nurul Aisyah ◽  
Andri Joko Purwanto ◽  
...  

A photovoltaic (PV) system integrated with a bi-fluid cooling mechanism, which is known as photovoltaic thermal (PVT) system, was investigated. The electrical characteristics of flexible solar panel were evaluated for PV and PV with bi-fluid (air and water) cooling system. The integration of monocrystalline flexible solar panel into both systems was tested under a fixed solar radiation of 800 W/m2. A total of 0.04–0.10 kg/s of air flow was utilised in PV with cooling system with a fixed water mass flow rate of 0.025 kg/s. The efficiencies of flexible panel for PV and PV with cooling system were explored. For PV with bi-fluid flow, the highest obtained efficiency of module was 15.95% when 0.08 kg/s of air and 0.025 kg/s of water were allowed to flow through the cooling system. Compared with PV without cooling mechanism, the highest efficiency of module was 13.35% under same solar radiation. Current–voltage and power graphs were also plotted to present the electrical characteristics (current, voltage and power) generated by both systems.

Author(s):  
A.R. Amelia ◽  
Y.M. Irwan ◽  
M. Irwanto ◽  
W.Z. Leow ◽  
N. Gomesh ◽  
...  

<span>Photovoltaic (PV) panel is the heart of solar system generally has a low energy conversion efficiency available in the market. PV panel temperature control is the main key to keeping the PV panel operate efficiently. This paper presented the great influenced of the cooling system in reduced PV panel temperature. A cooling system has been developed based on forced convection induced by DC fan as cooling mechanism. DC fan was attached at the back side of PV panel will extract the heat energy distributed and cool down the PV panel. The working operation of DC fan controlled by PIC18F4550 microcontroller which depending on the average value of PV panel temperature. Experiments were performed with and without cooling mechanism attached at the backside PV panel. The whole PV system was subsequently evaluated in outdoor weather conditions. As a result, it is concluded that there is an optimum number of DC fans required as cooling mechanism in producing efficient electrical output from a PV panel. The study clearly shows how cooling mechanism improves the performance of PV panel at the hot climatic weather. In short, the reduction of PV panel temperature is very important to keep its performance operated efficiently.</span>


Author(s):  
Y.M. Irwan ◽  
A.R. Amelia ◽  
M. Irwanto ◽  
W.Z. Leow ◽  
Z. Syafiqah ◽  
...  

An increasing efficiency of the solar system can be improved by using hybrid cooling mechanism. This paper presents the impact of hybrid cooling mechanism on PV panel under indoor testing with varying solar intensity. Thus, the fabrication of a solar simulator for indoor testing reacts as the space solar radiation is described. The performance of PV panel which attached to a hybrid cooling mechanism compared with PV panel without cooling mechanism under variation of average solar radiation. Experimental tests were carried out for various average solar radiations by varying the number of lamps and/or the lamp-to-area distance. Without altering the spectral distribution, the characteristic of current-voltage of PV panel was analysed under average solar radiation which varied from 202 W/m<sup>2</sup> to 1003 W/m<sup>2</sup>. As the result, the PV panel with hybrid cooling system explored to generate more power output with decreasing in PV panel temperature. About 15.79 % increment of power output generated by PV panel with cooling at maximum average solar radiation. Furthermore, the PV panel temperature also can be decreased about 10.28 % respectively. The combination of DC fan and water pump as cooling mechanism plays an important role in generating efficient power output from PV panel.


Author(s):  
A.R. Amelia ◽  
Y.M. Irwan ◽  
M. Irwanto ◽  
W.Z. Leow ◽  
N. Gomesh ◽  
...  

<span>Photovoltaic (PV) panel is the heart of solar system generally has a low energy conversion efficiency available in the market. PV panel temperature control is the main key to keeping the PV panel operate efficiently. This paper presented the great influenced of the cooling system in reduced PV panel temperature. A cooling system has been developed based on forced convection induced by DC fan as cooling mechanism. DC fan was attached at the back side of PV panel will extract the heat energy distributed and cool down the PV panel. The working operation of DC fan controlled by PIC18F4550 microcontroller which depending on the average value of PV panel temperature. Experiments were performed with and without cooling mechanism attached at the backside PV panel. The whole PV system was subsequently evaluated in outdoor weather conditions. As a result, it is concluded that there is an optimum number of DC fans required as cooling mechanism in producing efficient electrical output from a PV panel. The study clearly shows how cooling mechanism improves the performance of PV panel at the hot climatic weather. In short, the reduction of PV panel temperature is very important to keep its performance operated efficiently.</span>


Author(s):  
Mohd. Irwan Yusoff ◽  
Leow Wai Zhe ◽  
Muhammad Irwanto Misrun ◽  
Mohd Fareq Abd. Malek ◽  
Amelia Abdul Razak ◽  
...  

Measurement the outdoor efficiency of photovoltaic (PV) panels is essential, but it is not likely an exceptional circumstance at any given moment is always repeating itself. A solar simulator was designed and fabricated for the purpose of analyzing the performance of PV panel with and without an air cooling mechanism in indoor test. Twenty units of 500 W halogen lamps with build-in reflector support by the steel structure holder act as a natural sunlight. The uniformity of the solar radiation was measured in the test area. Two units of PV panel with same characteristics were experimental in three sets of uniformity of solar radiation, which are 620, 821 and 1016 W/m². The operating temperature of PV panel with an air cooling mechanism can be decreased 2-3 ˚C compared to PV panel reference. The PV panel with an air cooling mechanism can be increased in 3-7 % of maximum power output based on solar radiation. An overall method and procedure of the measurement by the solar simulator are discussed and proposed.


Author(s):  
Parshva Salot

This paper consists analysis on performance enhancement of solar photovoltaic cell by using reflecting and cooling system. The performance of PV (photovoltaic) module is strongly dependent on its surface temperature and solar radiation strikes on PV panel. It is necessary to study possible way for maintaining the appropriate temperature for solar panels and make system that will help to strikes maximum solar radiation on panel. High solar radiation and ambient temperature lead to an elevated photovoltaic cell operating temperature, which affects its lifespan and power output adversely. To enhance the electrical performance of the PV module we make one system which consists of two mirrors as a reflector placing beside solar panel and cooling system consists of pipe placed on upper area of solar panel. At time of sunrise and sunset low solar radiation is fall on solar panel, so reflecting system increase the intensity of solar radiation fall on solar panel. At noon time or afternoon the temperature of solar panel is increases it will decrease the efficiency of solar panel to minimize that cooling system is introduced that controlled the surface temperature.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1087
Author(s):  
Emad Natsheh ◽  
Sufyan Samara

The photovoltaic (PV) panel’s output energy depends on many factors. As they are becoming the leading alternative energy source, it is essential to get the best out of them. Although the main factor for maximizing energy production is proportional to the amount of solar radiation reaching the photovoltaic panel surface, other factors, such as temperature and shading, influence them negatively. Moreover, being installed in a dynamic and frequently harsh environment causes a set of reasons for faults, defects, and irregular operations. Any irregular operation should be recognized and classified into faults that need attention and, therefore, maintenance or as being a regular operation due to changes in some surrounding factors, such as temperature or solar radiation. Besides, in case of faults, it would be helpful to identify the source and the cause of the problem. Hence, this study presented a novel methodology that modeled a PV system in a tree-like hierarchy, which allowed the use of a fuzzy nonlinear autoregressive network with exogenous inputs (NARX) to detect and classify faults in a PV system with customizable granularity. Moreover, the used methodology enabled the identification of the exact source of fault(s) in a fully automated way. The study was done on a string of eight PV panels; however, the paper discussed using the algorithm on a more extensive PV system. The used fuzzy NARX algorithm in this study was able to classify the faults that appeared in up to five out of the eight PV panels and to identify the faulty PV panels with high accuracy. The used hardware could be controlled and monitored through a Wi-Fi connection, which added support for Internet of Things applications.


2014 ◽  
Vol 11 (2) ◽  
pp. 590-597
Author(s):  
Baghdad Science Journal

Been using a pv system program to determine the solar window for Baghdad city . the solar window for any location can be determine by deviating left and right from the geographical south as well as deviation according to the amount of tilt angle with the horizon for fixed panel so that will not change the average of solar radiation incident over the whole year and this lead to help in the process of installation of fixed solar panel without any effect on annual output .the range of solar window for Baghdad city between two angles ( -8 - +8 ) degrees left to right of the geographical south and tilt angle that allowed for the horizon range between angles (21- 30) degrees so that the amount of solar radiation that falling on the solar panel in this range of fixed angles about5.6 kw.h/m2 yearl.


2021 ◽  
Vol 49 (3) ◽  
pp. 664-672
Author(s):  
Sarah Al-Shammari ◽  
Abdulhassan Karamallah ◽  
Sattar Aljabair

The performance of the system of the solar radiation conversion is influenced via the angle of tilt with a horizontal plane; therefore, the photovoltaic array requires to be tilted at the right angle for maximizing the system conversion efficiency. The present paper has been carried out monthly at the optimum tilt angle numerically with an experimental system set up for home supply in Baghdad city (latitude 33°20'). Mathematical models were programmed by MATLAB to predict the solar energy incident on the surface all day of the year at angles from (0-90°). Experimental results manifested the performance of photovoltaic panel (PV) to provide a home with a light energy use in the shortcut electricity. The solar power system output is a function of the solar radiation. The high output of power was between (11.00 am) and (1.00 pm), which matches the high-power output time. The monthly optimum tilt angle can vary significantly during the year between 18° in summer to 65° in winter season.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6342
Author(s):  
Simone Lolli

Over the past few decades, the concentrating photovoltaic systems, a source of clean and renewable energy, often fully integrated into the roof structure, have been commonly installed on private houses and public buildings. The purpose of those panels is to transform the incoming solar radiation into electricity thanks to the photovoltaic effect. The produced electric power is affected, in the first instance, by the solar panel efficiency and its technical characteristics, but it is also strictly dependent on site elevation, the meteorological conditions and on the presence of the atmospheric constituents, i.e., clouds, hydrometeors, gas molecules and sub-micron-sized particles suspended in the atmosphere that can scatter and absorb the incoming shortwave solar radiation. The Aerosol Optical Depth (AOD) is an adimensional wavelength-dependent atmospheric column variable that accounts for aerosol concentration. AOD can be used as a proxy to evaluate the concentration of surface particulate matter and atmospheric column turbidity, which in turn affects the solar panel energy production. In this manuscript, a new technique is developed to retrieve the AOD at 550 nm through an iterative process: the atmospheric optical depth, incremented in steps of 0.01, is used as input together with the direct and diffuse radiation fluxes computed by Fu–Liou–Gu Radiative Transfer Model, to forecast the produced electric energy by a photovoltaic panel through a simple model. The process will stop at that AOD value (at 550 nm), for which the forecast electric power will match the real produced electric power by the photovoltaic panel within a previously defined threshold. This proof of concept is the first step of a wider project that aims to develop a user-friendly smartphone application where photovoltaic panel owners, once downloaded it on a voluntary basis, can turn their photovoltaic system into a sunphotometer to continuously retrieve the AOD, and more importantly, to monitor the air quality and detect strong air pollution episodes that pose a threat for population health.


Sign in / Sign up

Export Citation Format

Share Document