scholarly journals Harmonic Suppression of Shunt Hybrid Filter Using LQR-PSO based

Author(s):  
Nor Shahida Hasan ◽  
Norzanah Rosmin ◽  
Saifulnizam Abd Khalid ◽  
Dygku. Asmanissa Awg. Osman ◽  
Baharuddin Ishak ◽  
...  

In linear quadratic regulator (LQR), two different weighting matrices play an important role in presenting the performance of this controller. Instead of using classic common approach, which is trial and error method, this study proposes a particle swarm optimization (PSO) algorithm to track the best solution of the weighting matrices. The proposed algorithm is tested on shunt hybrid active power filter (APF) to mitigate the harmonic contents in voltage and current signals in a nonlinear load system. The modeling work of this proposed system is simulated using MATLAB/Simulink software. From the simulation, the obtained results proved that using PSO in tuning the LQR controller produce smoother nonlinear voltage and current signals. In fact, the amount of current to be injected into network can be reduced up to 95%. Besides, less time is consumed during searching the optimum weighting matrices using the proposed approach.

Author(s):  
Tao Sun ◽  
Yuping He

To date, Linear Quadratic Regulator (LQR) controllers based on linear vehicle models have been researched and developed for improving the lateral stability of car-trailer (CT) combinations. However, in the LQR controller design, there is no a systematic way to determine the weighting factors of the performance index. Generally, the weighting factors are selected using trial and error based on designer’s experience. In order to facilitate the LQR controller design, a new method based on a genetic algorithm (GA) is presented to determine the appropriate weighting factors in the LQR controller design. To examine the proposed method, a controller for an active trailer differential braking (ATDB) system of a car-trailer (CT) system is designed and examined. The simulation results indicate that compared with the LQR controller based on the weighting factors derived from the conventional trial and error method, the controller developed using the proposed method exhibits better performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wagner B. Lenz ◽  
Mauricio A. Ribeiro ◽  
Rodrigo T. Rocha ◽  
Jose M. Balthazar ◽  
Angelo M. Tusset

Buoy systems are an alternative for micropowering small devices in remote locations. Portal frames are very useful to harvest the energy of the waves into usable energy. Thus, using the current models for a portal frame in the literature and the spectrum of available energy in sea waves, a nonlinear mathematical model accounting for the coupling of a nonlinear piezoelectric material is considered. The neighbour of selected variables is analyzed and then optimized by a process utilizing the particle swarm optimization (PSO) algorithm. Furthermore, an optimal control using the linear-quadratic regulator (LQR) controller is applied to control the load resistance of the piezoelectric circuit. The optimization process and the LQR show to be effective. The results show a general gain due to optimization and a relatively small gain using the controller.


Author(s):  
Ishan Chawla ◽  
Vikram Chopra ◽  
Ashish Singla

AbstractFrom the last few decades, inverted pendulums have become a benchmark problem in dynamics and control theory. Due to their inherit nature of nonlinearity, instability and underactuation, these are widely used to verify and implement emerging control techniques. Moreover, the dynamics of inverted pendulum systems resemble many real-world systems such as segways, humanoid robots etc. In the literature, a wide range of controllers had been tested on this problem, out of which, the most robust being the sliding mode controller while the most optimal being the linear quadratic regulator (LQR) controller. The former has a problem of non-robust reachability phase while the later lacks the property of robustness. To address these issues in both the controllers, this paper presents the novel implementation of integral sliding mode controller (ISMC) for stabilization of a spatial inverted pendulum (SIP), also known as an x-y-z inverted pendulum. The structure has three control inputs and five controlled outputs. Mathematical modeling of the system is done using Euler Lagrange approach. ISMC has an advantage of eliminating non-robust reachability phase along with enhancing the robustness of the nominal controller (LQR Controller). To validate the robustness of ISMC to matched uncertainties, an input disturbance is added to the nonlinear model of the system. Simulation results on two different case studies demonstrate that the proposed controller is more robust as compared to conventional LQR controller. Furthermore, the problem of chattering in the controller is dealt by smoothening the controller inputs to the system with insignificant loss in robustness.


Author(s):  
G. Yakubu ◽  
G. Sani ◽  
S. B. Abdulkadir ◽  
A. A.Jimoh ◽  
M. Francis

Full car passive and active damping system mathematical model was developed. Computer simulation using MATLAB was performed and analyzed. Two different road profile were used to check the performance of the passive and active damping using Linear Quadratic Regulator controller (LQR)Road profile 1 has three bumps with amplitude of 0.05m, 0.025 m and 0.05 m. Road profile 2 has a bump with amplitude of 0.05 m and a hole of -0.025 m. For all the road profiles, there were 100% amplitude reduction in Wheel displacement, Wheel deflection, Suspension travel and body displacement, and 97.5% amplitude reduction in body acceleration for active damping with LQR controller as compared to the road profile and 54.0% amplitude reduction in body acceleration as compared to the passive damping system. For the two road profiles, the settling time for all the observed parameters was less than two (2) seconds. The present work gave faster settling time for mass displacement, body acceleration and wheel displacement.


Author(s):  
Trong-Thang Nguyen

<span>This research aims to propose an optimal controller for controlling the speed of the Direct Current (DC) motor. Based on the mathematical equations of DC Motor, the author builds the equations of the state space model and builds the linear quadratic regulator (LQR) controller to minimize the error between the set speed and the response speed of DC motor. The results of the proposed controller are compared with the traditional controllers as the PID, the feed-forward controller. The simulation results show that the quality of the control system in the case of LQR controller is much higher than the traditional controllers. The response speed always follows the set speed with the short conversion time, there isn't overshoot. The response speed is almost unaffected when the torque impact on the shaft is changed.</span>


Author(s):  
Shusheng Zang ◽  
Jaqiang Pan

The design of a modern Linear Quadratic Regulator (LQR) is described for a test steam injected gas turbine (STIG) unit. The LQR controller is obtained by using the fuel flow rate and the injected steam flow rate as the output parameters. To meet the goal of the shaft speed control, a classical Proportional Differential (PD) controller is compared to the LQR controller design. The control performance of the dynamic response of the STIG plant in the case of rejection of load is evaluated. The results of the computer simulation show a remarkable improvement on the dynamic performance of the STIG unit.


Author(s):  
Ishan Chawla ◽  
Ashish Singla

AbstractFrom the last five decades, inverted pendulum (IP) has been considered as a benchmark problem in the control literature due to its inherit nature of instability, non-linearity and underactuation. Its applicability in wide range of practical systems, demands the need of a robust controller. It is found in the literature that wide range of controllers had been tested on this problem, out of which the most robust being sliding mode controller while the most optimal being linear quadratic regulator (LQR) controller. The former has a problem of discontinuity and chattering, while the latter lacks the property of robustness. To address the robustness issue in LQR controller, this paper proposes a novel robust LQR-based adaptive neural based fuzzy inference system controller, which is a hybrid of LQR and fuzzy inference system. The proposed controller is designed and implemented on rotary inverted pendulum. Further, to validate the robustness of proposed controller to parametric uncertainties, pendulum mass is varied. Simulation and experimental results show that as compared to LQR controller, the proposed controller is robust to variations in pendulum mass and has shown satisfactory performance.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xuejuan Shao ◽  
Jinggang Zhang ◽  
Xueliang Zhang

The dynamic model of overhead crane is highly nonlinear and uncertain. In this paper, Takagi-Sugeno (T-S) fuzzy modeling and PSO-based robust linear quadratic regulator (LQR) are proposed for anti-swing and positioning control of the system. First, on the basis of sector nonlinear theory, the two T-S fuzzy models are established by using the virtual control variables and approximate method. Then, considering the uncertainty of the model, robust LQR controllers with parallel distributed compensation (PDC) structure are designed. The feedback gain matrices are obtained by transforming the stability and robustness of the system into linear matrix inequalities (LMIs) problem. In addition, particle swarm optimization (PSO) algorithm is used to overcome the blindness of LQR weight matrix selection in the design process. The proposed control methods are simple, feasible, and robust. Finally, the numeral simulations are carried out to prove the effectiveness of the methods.


2015 ◽  
Vol 761 ◽  
pp. 227-232 ◽  
Author(s):  
Tang Teng Fong ◽  
Zamberi Jamaludin ◽  
Ahmad Yusairi Bani Hashim ◽  
Muhamad Arfauz A. Rahman

The control of rotary inverted pendulum is a case of classical robust controller design of non-linear system applications. In the control system design, a precise system model is a pre-requisite for an enhanced and optimum control performance. This paper describes the dynamic system model of an inverted pendulum system. The mathematical model was derived, linearized at the upright equilibrium points and validated using non-linear least square frequency domain identification approach based on measured frequency response function of the physical system. Besides that, a linear quadratic regulator (LQR) controller was designed as the balancing controller for the pendulum. An extensive analysis was performed on the effect of the weighting parameter Q on the static time of arm, balance time of pendulum, oscillation, as well as, response of arm and pendulum, in order to determine the optimum state-feedback control vector, K. Furthermore, the optimum control vector was successfully applied and validated on the physical system to stabilize the pendulum in its upright position. In the experimental validation, the LQR controller was able to keep the pendulum in its upright position even in the presence of external disturbance forces.


Author(s):  
Dechrit Maneetham ◽  
Petrus Sutyasadi

This research proposes control method to balance and stabilize an inverted pendulum. A robust control was analyzed and adjusted to the model output with real time feedback. The feedback was obtained using state space equation of the feedback controller. A linear quadratic regulator (LQR) model tuning and control was applied to the inverted pendulum using internet of things (IoT). The system's conditions and performance could be monitored and controlled via personal computer (PC) and mobile phone. Finally, the inverted pendulum was able to be controlled using the LQR controller and the IoT communication developed will monitor to check the all conditions and performance results as well as help the inverted pendulum improved various operations of IoT control is discussed.


Sign in / Sign up

Export Citation Format

Share Document