scholarly journals AI-based targeted advertising system

Author(s):  
Tew Jia Yu ◽  
Chin Poo Lee ◽  
Kian Ming Lim ◽  
Siti Fatimah Abdul Razak

<span>The most common technology used in targeted advertising is facial recognition and vehicle recognition. Even though there are existing systems serving for the targeting purposes, most propose limited functionalities and the system performance is normally unknown. This paper presents an intelligent targeted advertising system with multiple functionalities, namely facial recognition for gender and age, vehicle recognition, and multiple object detection. The main purpose is to improve the effectiveness of outdoor advertising through biometrics approaches and machine learning technology. Machine learning algorithms are implemented for higher recognition accuracy and hence achieved better targeted advertising effect.</span>

2021 ◽  
Vol 30 (1) ◽  
pp. 460-469
Author(s):  
Yinying Cai ◽  
Amit Sharma

Abstract In the agriculture development and growth, the efficient machinery and equipment plays an important role. Various research studies are involved in the implementation of the research and patents to aid the smart agriculture and authors and reviewers that machine leaning technologies are providing the best support for this growth. To explore machine learning technology and machine learning algorithms, the most of the applications are studied based on the swarm intelligence optimization. An optimized V3CFOA-RF model is built through V3CFOA. The algorithm is tested in the data set collected concerning rice pests, later analyzed and compared in detail with other existing algorithms. The research result shows that the model and algorithm proposed are not only more accurate in recognition and prediction, but also solve the time lagging problem to a degree. The model and algorithm helped realize a higher accuracy in crop pest prediction, which ensures a more stable and higher output of rice. Thus they can be employed as an important decision-making instrument in the agricultural production sector.


Author(s):  
Aska E. Mehyadin ◽  
Adnan Mohsin Abdulazeez ◽  
Dathar Abas Hasan ◽  
Jwan N. Saeed

The bird classifier is a system that is equipped with an area machine learning technology and uses a machine learning method to store and classify bird calls. Bird species can be known by recording only the sound of the bird, which will make it easier for the system to manage. The system also provides species classification resources to allow automated species detection from observations that can teach a machine how to recognize whether or classify the species. Non-undesirable noises are filtered out of and sorted into data sets, where each sound is run via a noise suppression filter and a separate classification procedure so that the most useful data set can be easily processed. Mel-frequency cepstral coefficient (MFCC) is used and tested through different algorithms, namely Naïve Bayes, J4.8 and Multilayer perceptron (MLP), to classify bird species. J4.8 has the highest accuracy (78.40%) and is the best. Accuracy and elapsed time are (39.4 seconds).


Author(s):  
M. M. Ata ◽  
K. M. Elgamily ◽  
M. A. Mohamed

The presented paper proposes an algorithm for palmprint recognition using seven different machine learning algorithms. First of all, we have proposed a region of interest (ROI) extraction methodology which is a two key points technique. Secondly, we have performed some image enhancement techniques such as edge detection and morphological operations in order to make the ROI image more suitable for the Hough transform. In addition, we have applied the Hough transform in order to extract all the possible principle lines on the ROI images. We have extracted the most salient morphological features of those lines; slope and length. Furthermore, we have applied the invariant moments algorithm in order to produce 7 appropriate hues of interest. Finally, after performing a complete hybrid feature vectors, we have applied different machine learning algorithms in order to recognize palmprints effectively. Recognition accuracy have been tested by calculating precision, sensitivity, specificity, accuracy, dice, Jaccard coefficients, correlation coefficients, and training time. Seven different supervised machine learning algorithms have been implemented and utilized. The effect of forming the proposed hybrid feature vectors between Hough transform and Invariant moment have been utilized and tested. Experimental results show that the feed forward neural network with back propagation has achieved about 99.99% recognition accuracy among all tested machine learning techniques.


2020 ◽  
Author(s):  
Ahmed Tageldin ◽  
Dalia Adly ◽  
Hassan Mostafa ◽  
Haitham S Mohammed

AbstractThe use of technology in agriculture has grown in recent years with the era of data analytics affecting every industry. The main challenge in using technology in agriculture is identification of effectiveness of big data analytics algorithms and their application methods. Pest management is one of the most important problems facing farmers. The cotton leafworm, Spodoptera littoralis (Boisd.) (CLW) is one of the major polyphagous key pests attacking plants includes 73 species recorded at Egypt. In the present study, several machine learning algorithms have been implemented to predict plant infestation with CLW. The moth of CLW data was weekly collected for two years in a commercial hydroponic greenhouse. Furthermore, among other features temperature and relative humidity were recorded over the total period of the study. It was proven that the XGBoost algorithm is the most effective algorithm applied in this study. Prediction accuracy of 84 % has been achieved using this algorithm. The impact of environmental features on the prediction accuracy was compared with each other to ensure a complete dataset for future results. In conclusion, the present study provided a framework for applying machine learning in the prediction of plant infestation with the CLW in the greenhouses. Based on this framework, further studies with continuous measurements are warranted to achieve greater accuracy.


2021 ◽  
Vol 257 ◽  
pp. 01019
Author(s):  
Zhe Li ◽  
Haifeng Su

Based on machine learning technology and combining the operation of machine learning from the idea of neural network, this paper focuses on the classification and recognition of image data of transformers, circuit breakers and isolation switches in substations. Firstly, the image enhancement is carried out on the basis of the original image, which simulates the possible scenes in reality. Secondly, using the dual-mode a deconvolutional network to capture significant features from in-depth visible and infrared images. Furthermore, all these features are subjected to the program to conduct transfer learning and weighted fusion. The dual-mode deconvolutional network (DMDN) extracts and highlights the features of the electrical equipment. Compared to traditional model, the recognition accuracy of the improved model is reached at 99.17%.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Rajkumar Gangappa Nadakinamani ◽  
A. Reyana ◽  
Sandeep Kautish ◽  
A. S. Vibith ◽  
Yogita Gupta ◽  
...  

Cardiovascular disease is difficult to detect due to several risk factors, including high blood pressure, cholesterol, and an abnormal pulse rate. Accurate decision-making and optimal treatment are required to address cardiac risk. As machine learning technology advances, the healthcare industry’s clinical practice is likely to change. As a result, researchers and clinicians must recognize the importance of machine learning techniques. The main objective of this research is to recommend a machine learning-based cardiovascular disease prediction system that is highly accurate. In contrast, modern machine learning algorithms such as REP Tree, M5P Tree, Random Tree, Linear Regression, Naive Bayes, J48, and JRIP are used to classify popular cardiovascular datasets. The proposed CDPS’s performance was evaluated using a variety of metrics to identify the best suitable machine learning model. When it came to predicting cardiovascular disease patients, the Random Tree model performed admirably, with the highest accuracy of 100%, the lowest MAE of 0.0011, the lowest RMSE of 0.0231, and the fastest prediction time of 0.01 seconds.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kumash Kapadia ◽  
Hussein Abdel-Jaber ◽  
Fadi Thabtah ◽  
Wael Hadi

Indian Premier League (IPL) is one of the more popular cricket world tournaments, and its financial is increasing each season, its viewership has increased markedly and the betting market for IPL is growing significantly every year. With cricket being a very dynamic game, bettors and bookies are incentivised to bet on the match results because it is a game that changes ball-by-ball. This paper investigates machine learning technology to deal with the problem of predicting cricket match results based on historical match data of the IPL. Influential features of the dataset have been identified using filter-based methods including Correlation-based Feature Selection, Information Gain (IG), ReliefF and Wrapper. More importantly, machine learning techniques including Naïve Bayes, Random Forest, K-Nearest Neighbour (KNN) and Model Trees (classification via regression) have been adopted to generate predictive models from distinctive feature sets derived by the filter-based methods. Two featured subsets were formulated, one based on home team advantage and other based on Toss decision. Selected machine learning techniques were applied on both feature sets to determine a predictive model. Experimental tests show that tree-based models particularly Random Forest performed better in terms of accuracy, precision and recall metrics when compared to probabilistic and statistical models. However, on the Toss featured subset, none of the considered machine learning algorithms performed well in producing accurate predictive models.


With the rapid development of artificial intelligence, various machine learning algorithms have been widely used in the task of football match result prediction and have achieved certain results. However, traditional machine learning methods usually upload the results of previous competitions to the cloud server in a centralized manner, which brings problems such as network congestion, server computing pressure and computing delay. This paper proposes a football match result prediction method based on edge computing and machine learning technology. Specifically, we first extract some game data from the results of the previous games to construct the common features and characteristic features, respectively. Then, the feature extraction and classification task are deployed to multiple edge nodes.Finally, the results in all the edge nodes are uploaded to the cloud server and fused to make a decision. Experimental results have demonstrated the effectiveness of the proposed method.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1415
Author(s):  
Hirokazu Madokoro ◽  
Kazuhisa Nakasho ◽  
Nobuhiro Shimoi ◽  
Hanwool Woo ◽  
Kazuhito Sato

This paper presents a novel bed-leaving sensor system for real-time recognition of bed-leaving behavior patterns. The proposed system comprises five pad sensors installed on a bed, a rail sensor inserted in a safety rail, and a behavior pattern recognizer based on machine learning. The linear characteristic between loads and output was obtained from a load test to evaluate sensor output characteristics. Moreover, the output values change linearly concomitantly with speed to attain the sensor with the equivalent load. We obtained benchmark datasets of continuous and discontinuous behavior patterns from ten subjects. Recognition targets using our sensor prototype and their monitoring system comprise five behavior patterns: sleeping, longitudinal sitting, lateral sitting, terminal sitting, and leaving the bed. We compared machine learning algorithms of five types to recognize five behavior patterns. The experimentally obtained results revealed that the proposed sensor system improved recognition accuracy for both datasets. Moreover, we achieved improved recognition accuracy after integration of learning datasets as a general discriminator.


2020 ◽  
Vol 8 (5) ◽  
pp. 2722-2727

Many people adopting Smart Assistant Devices such as Google Home. Now a days of solely engaging with a service through a keyboard are over. The new modes of user interaction are aided in part by this research will investigate how advancements in Artificial Intelligence and Machine Learning technology are being used to improve many services. In particular, it will look at the development of google assistants as a channel for information distribution. This project is aimed to implement an android-based chatbot to assist with Organization basic processes, using google tools such as Dialogflow that uses Natural language processing NLP, Actions on Google and Google Cloud Platform that expose artificial intelligence and Machine Learning methods such as natural language understanding. Allowing users to interact with the google assistant using natural language as input and to train the chatbot i.e. google assistant using Dialogflow Machine learning tool and some appropriate methods so it will be able to generate a dynamic response. The chatbot will allow users to view all their personal academic information, schedule meetings with higher officials, automating the organization process and organization resources information all from within the chatbot i.e. Google Assistant. This project uses the OAuth authentication for security purpose. The Dialogflow helps to understand the users query by using machine learning algorithms. By using this google assistant we are going to use the Cloud Vision API for advancement. We will use Dialogflow as key part to develop Google assistant.


Sign in / Sign up

Export Citation Format

Share Document