scholarly journals A comparative study on dimensionality reduction between principal component analysis and k-means clustering

Author(s):  
Norsyela Muhammad Noor Mathivanan ◽  
Nor Azura Md.Ghani ◽  
Roziah Mohd Janor

<span>The curse of dimensionality and the empty space phenomenon emerged as a critical problem in text classification. One way of dealing with this problem is applying a feature selection technique before performing a classification model. This technique helps to reduce the time complexity and sometimes increase the classification accuracy. This study introduces a feature selection technique using K-Means clustering to overcome the weaknesses of traditional feature selection technique such as principal component analysis (PCA) that require a lot of time to transform all the inputs data. This proposed technique decides on features to retain based on the significance value of each feature in a cluster. This study found that k-means clustering helps to increase the efficiency of KNN model for a large data set while KNN model without feature selection technique is suitable for a small data set. A comparison between K-Means clustering and PCA as a feature selection technique shows that proposed technique is better than PCA especially in term of computation time. Hence, k-means clustering is found to be helpful in reducing the data dimensionality with less time complexity compared to PCA without affecting the accuracy of KNN model for a high frequency data.</span>

An Ad-hoc network is a kind of wireless construction from one to another computer, without having Wi-Fi access point or Router. However, the Ad hoc approach offers marginal security and decreases the data transfer rate. Consequently, it helps the attacker to connect with the ad-hoc network without any trouble. Therefore, a robust and reliable intrusion detection system (IDS) is a necessity of today’s information security domain. These IDS systems play a vital role in monitoring the threats encountered in a network by detecting the change in the normal profile due to attacks. Recently, to detect attacks the IDS are being equipped with machine learning algorithms to attain better accuracy and fast detection speed. Most of the IDS use different network features. However, enormous number of features makes the detection and prevention complicated. The IDS presented in this paper employs random forest and principal component analysis to minimize the number of features for network IDS for wireless ad hoc networks. The one class SVM has been used for detection of worm hole attack with and without feature selection. The performances of these approaches are compared with various existing techniques with false positive rate (FPR), accuracy and detection rate. Here, the accuracy improves and false positive rate reduces when intrusion is detected with feature selection technique. This paper discusses the performance of the one class SVM classifier in the wireless adhoc network IDS with random forest feature selection and principal component analysis feature selection techniques and one class SVM classifier without feature selection technique in the detection of wormhole attack. And the performance of one class SVM IDS is better in the detection of wormhole attack while it is implemented with principal component analysis feature selection technique.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Debabrata Samanta ◽  
M. P. Karthikeyan ◽  
Marimuthu Karuppiah ◽  
Dalima Parwani ◽  
Manish Maheshwari ◽  
...  

One of the most important and difficult research fields is newborn jaundice grading. The mitotic count is an important component in determining the severity of newborn jaundice. The use of principal component analysis (PCA) feature selection and an optimal tree strategy classifier to produce automatic mitotic detection in histopathology images and grading is given. This study makes use of real-time and benchmark datasets, as well as specific approaches for detecting jaundice in newborn newborns. According to research, the quality of the feature may have a negative impact on categorization performance. Additionally, compressing the classification method for exclusive main properties can result in a classification performance bottleneck. As a result, identifying appropriate characteristics for training the classifier is required. By combining a feature selection method with a classification model, this is possible. The major outcomes of this study revealed that image processing techniques are critical for predicting neonatal hyperbilirubinemia. Image processing is a method of translating analogue images to digital formats and manipulating them. The primary goal of medical image processing is to collect information useful for disease detection, diagnosis, monitoring, and therapy. Image datasets can be used to validate the performance of newborn jaundice detection. When compared to conventional approaches, it offers results that are accurate, quick, and time efficient. Accuracy, sensitivity, and specificity, which are common performance indicators, were also predictive.


2017 ◽  
Vol 727 ◽  
pp. 447-449 ◽  
Author(s):  
Jun Dai ◽  
Hua Yan ◽  
Jian Jian Yang ◽  
Jun Jun Guo

To evaluate the aging behavior of high density polyethylene (HDPE) under an artificial accelerated environment, principal component analysis (PCA) was used to establish a non-dimensional expression Z from a data set of multiple degradation parameters of HDPE. In this study, HDPE samples were exposed to the accelerated thermal oxidative environment for different time intervals up to 64 days. The results showed that the combined evaluating parameter Z was characterized by three-stage changes. The combined evaluating parameter Z increased quickly in the first 16 days of exposure and then leveled off. After 40 days, it began to increase again. Among the 10 degradation parameters, branching degree, carbonyl index and hydroxyl index are strongly associated. The tensile modulus is highly correlated with the impact strength. The tensile strength, tensile modulus and impact strength are negatively correlated with the crystallinity.


2021 ◽  
Vol 174 ◽  
pp. 114765 ◽  
Author(s):  
Erick Odhiambo Omuya ◽  
George Onyango Okeyo ◽  
Michael Waema Kimwele

Sign in / Sign up

Export Citation Format

Share Document