scholarly journals Bangla language textual image description by hybrid neural network model

Author(s):  
Md. Asifuzzaman Jishan ◽  
Khan Raqib Mahmud ◽  
Abul Kalam Al Azad ◽  
Mohammad Rifat Ahmmad Rashid ◽  
Bijan Paul ◽  
...  

Automatic image captioning task in different language is a challenging task which has not been well investigated yet due to the lack of dataset and effective models. It also requires good understanding of scene and contextual embedding for robust semantic interpretation of images for natural language image descriptor. To generate image descriptor in Bangla, we created a new Bangla dataset of images paired with target language label, named as Bangla Natural Language Image to Text (BNLIT) dataset. To deal with the image understanding, we propose a hybrid encoder-decoder model based on encoder-decoder architecture and the model is evaluated on our newly created dataset. This proposed approach achieves significance performance improvement on task of semantic retrieval of images. Our hybrid model uses the Convolutional Neural<br />Network as an encoder whereas the Bidirectional Long Short Term Memory is used for the sentence representation that decreases the computational complexities without trading off the exactness of the descriptor. The model yielded benchmark accuracy in recovering Bangla natural language and we also conducted a thorough numerical analysis of the model performance on the BNLIT dataset.

2018 ◽  
Vol 24 (3) ◽  
pp. 393-413 ◽  
Author(s):  
STELLA FRANK ◽  
DESMOND ELLIOTT ◽  
LUCIA SPECIA

AbstractTwo studies on multilingual multimodal image description provide empirical evidence towards two questions at the core of the task: (i) whether target language speakers prefer descriptions generated directly in their native language, as compared to descriptions translated from a different language; (ii) whether images improve human translation of descriptions. These results provide guidance for future work in multimodal natural language processing by first showing that on the whole, translations are not distinguished from native language descriptions, and second delineating and quantifying the information gained from the image during the human translation task.


2020 ◽  
Vol 3 (1) ◽  
pp. 138-146
Author(s):  
Subash Pandey ◽  
Rabin Kumar Dhamala ◽  
Bikram Karki ◽  
Saroj Dahal ◽  
Rama Bastola

 Automatically generating a natural language description of an image is a major challenging task in the field of artificial intelligence. Generating description of an image bring together the fields: Natural Language Processing and Computer Vision. There are two types of approaches i.e. top-down and bottom-up. For this paper, we approached top-down that starts from the image and converts it into the word. Image is passed to Convolutional Neural Network (CNN) encoder and the output from it is fed further to Recurrent Neural Network (RNN) decoder that generates meaningful captions. We generated the image description by passing the real time images from the camera of a smartphone as well as tested with the test images from the dataset. To evaluate the model performance, we used BLEU (Bilingual Evaluation Understudy) score and match predicted words to the original caption.


A language known to humans is a natural language. In computer science it is the most challenging task to make the computers understand the natural languages and generating caption automatically from the given image. While a lot of work has been done, the total solution to this problem has been demonstrated daunting so far. Image captioning is a crucial job involving linguistic image understanding and the ability to generate interpretation of sentences with proper and accurate structure. It requires expertise in Image processing and natural language processing. The publishers suggest in this practice a system using the multilayer Convolutional Neural Network (CNN) to generate language describing the images and Long Short Term Memory (LSTM) to concisely frame relevant phrases using the driven keywords. We aim in this article to provide a brief overview of current methods and algorithms of image captioning using deep learning. We also address datasets and measurement criteria widely used for the same.


Discourse ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 109-117
Author(s):  
O. M. Polyakov

Introduction. The article continues the series of publications on the linguistics of relations (hereinafter R–linguistics) and is devoted to an introduction to the logic of natural language in relation to the approach considered in the series. The problem of natural language logic still remains relevant, since this logic differs significantly from traditional mathematical logic. Moreover, with the appearance of artificial intelligence systems, the importance of this problem only increases. The article analyzes logical problems that prevent the application of classical logic methods to natural languages. This is possible because R-linguistics forms the semantics of a language in the form of world model structures in which language sentences are interpreted.Methodology and sources. The results obtained in the previous parts of the series are used as research tools. To develop the necessary mathematical representations in the field of logic and semantics, the formulated concept of the interpretation operator is used.Results and discussion. The problems that arise when studying the logic of natural language in the framework of R–linguistics are analyzed. These issues are discussed in three aspects: the logical aspect itself; the linguistic aspect; the aspect of correlation with reality. A very General approach to language semantics is considered and semantic axioms of the language are formulated. The problems of the language and its logic related to the most General view of semantics are shown.Conclusion. It is shown that the application of mathematical logic, regardless of its type, to the study of natural language logic faces significant problems. This is a consequence of the inconsistency of existing approaches with the world model. But it is the coherence with the world model that allows us to build a new logical approach. Matching with the model means a semantic approach to logic. Even the most General view of semantics allows to formulate important results about the properties of languages that lack meaning. The simplest examples of semantic interpretation of traditional logic demonstrate its semantic problems (primarily related to negation).


2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 445-451
Author(s):  
Yifei Sun ◽  
Navid Rashedi ◽  
Vikrant Vaze ◽  
Parikshit Shah ◽  
Ryan Halter ◽  
...  

ABSTRACT Introduction Early prediction of the acute hypotensive episode (AHE) in critically ill patients has the potential to improve outcomes. In this study, we apply different machine learning algorithms to the MIMIC III Physionet dataset, containing more than 60,000 real-world intensive care unit records, to test commonly used machine learning technologies and compare their performances. Materials and Methods Five classification methods including K-nearest neighbor, logistic regression, support vector machine, random forest, and a deep learning method called long short-term memory are applied to predict an AHE 30 minutes in advance. An analysis comparing model performance when including versus excluding invasive features was conducted. To further study the pattern of the underlying mean arterial pressure (MAP), we apply a regression method to predict the continuous MAP values using linear regression over the next 60 minutes. Results Support vector machine yields the best performance in terms of recall (84%). Including the invasive features in the classification improves the performance significantly with both recall and precision increasing by more than 20 percentage points. We were able to predict the MAP with a root mean square error (a frequently used measure of the differences between the predicted values and the observed values) of 10 mmHg 60 minutes in the future. After converting continuous MAP predictions into AHE binary predictions, we achieve a 91% recall and 68% precision. In addition to predicting AHE, the MAP predictions provide clinically useful information regarding the timing and severity of the AHE occurrence. Conclusion We were able to predict AHE with precision and recall above 80% 30 minutes in advance with the large real-world dataset. The prediction of regression model can provide a more fine-grained, interpretable signal to practitioners. Model performance is improved by the inclusion of invasive features in predicting AHE, when compared to predicting the AHE based on only the available, restricted set of noninvasive technologies. This demonstrates the importance of exploring more noninvasive technologies for AHE prediction.


2021 ◽  
Vol 21 (2) ◽  
pp. 1-25
Author(s):  
Pin Ni ◽  
Yuming Li ◽  
Gangmin Li ◽  
Victor Chang

Cyber-Physical Systems (CPS), as a multi-dimensional complex system that connects the physical world and the cyber world, has a strong demand for processing large amounts of heterogeneous data. These tasks also include Natural Language Inference (NLI) tasks based on text from different sources. However, the current research on natural language processing in CPS does not involve exploration in this field. Therefore, this study proposes a Siamese Network structure that combines Stacked Residual Long Short-Term Memory (bidirectional) with the Attention mechanism and Capsule Network for the NLI module in CPS, which is used to infer the relationship between text/language data from different sources. This model is mainly used to implement NLI tasks and conduct a detailed evaluation in three main NLI benchmarks as the basic semantic understanding module in CPS. Comparative experiments prove that the proposed method achieves competitive performance, has a certain generalization ability, and can balance the performance and the number of trained parameters.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Olga Majewska ◽  
Charlotte Collins ◽  
Simon Baker ◽  
Jari Björne ◽  
Susan Windisch Brown ◽  
...  

Abstract Background Recent advances in representation learning have enabled large strides in natural language understanding; However, verbal reasoning remains a challenge for state-of-the-art systems. External sources of structured, expert-curated verb-related knowledge have been shown to boost model performance in different Natural Language Processing (NLP) tasks where accurate handling of verb meaning and behaviour is critical. The costliness and time required for manual lexicon construction has been a major obstacle to porting the benefits of such resources to NLP in specialised domains, such as biomedicine. To address this issue, we combine a neural classification method with expert annotation to create BioVerbNet. This new resource comprises 693 verbs assigned to 22 top-level and 117 fine-grained semantic-syntactic verb classes. We make this resource available complete with semantic roles and VerbNet-style syntactic frames. Results We demonstrate the utility of the new resource in boosting model performance in document- and sentence-level classification in biomedicine. We apply an established retrofitting method to harness the verb class membership knowledge from BioVerbNet and transform a pretrained word embedding space by pulling together verbs belonging to the same semantic-syntactic class. The BioVerbNet knowledge-aware embeddings surpass the non-specialised baseline by a significant margin on both tasks. Conclusion This work introduces the first large, annotated semantic-syntactic classification of biomedical verbs, providing a detailed account of the annotation process, the key differences in verb behaviour between the general and biomedical domain, and the design choices made to accurately capture the meaning and properties of verbs used in biomedical texts. The demonstrated benefits of leveraging BioVerbNet in text classification suggest the resource could help systems better tackle challenging NLP tasks in biomedicine.


Author(s):  
Mirosław Pawlak ◽  
Adriana Biedroń

Abstract This paper reports the findings of a study that investigated the relationship between phonological short-term memory (PSTM), working memory capacity (WMC), and the level of mastery of L2 grammar. Grammatical mastery was operationalized as the ability to produce and comprehend English passive voice with reference to explicit and implicit (or highly automatized) knowledge. Correlational analysis showed that PSTM was related to implicit productive knowledge while WMC was linked to explicit productive knowledge. However, regression analysis showed that those relationships were weak and mediated by overall mastery of target language grammar, operationalized as final grades in a grammar course.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lei Li ◽  
Desheng Wu

PurposeThe infraction of securities regulations (ISRs) of listed firms in their day-to-day operations and management has become one of common problems. This paper proposed several machine learning approaches to forecast the risk at infractions of listed corporates to solve financial problems that are not effective and precise in supervision.Design/methodology/approachThe overall proposed research framework designed for forecasting the infractions (ISRs) include data collection and cleaning, feature engineering, data split, prediction approach application and model performance evaluation. We select Logistic Regression, Naïve Bayes, Random Forest, Support Vector Machines, Artificial Neural Network and Long Short-Term Memory Networks (LSTMs) as ISRs prediction models.FindingsThe research results show that prediction performance of proposed models with the prior infractions provides a significant improvement of the ISRs than those without prior, especially for large sample set. The results also indicate when judging whether a company has infractions, we should pay attention to novel artificial intelligence methods, previous infractions of the company, and large data sets.Originality/valueThe findings could be utilized to address the problems of identifying listed corporates' ISRs at hand to a certain degree. Overall, results elucidate the value of the prior infraction of securities regulations (ISRs). This shows the importance of including more data sources when constructing distress models and not only focus on building increasingly more complex models on the same data. This is also beneficial to the regulatory authorities.


Author(s):  
Saud Altaf ◽  
Sofia Iqbal ◽  
Muhammad Waseem Soomro

This paper focuses on capturing the meaning of Natural Language Understanding (NLU) text features to detect the duplicate unsupervised features. The NLU features are compared with lexical approaches to prove the suitable classification technique. The transfer-learning approach is utilized to train the extraction of features on the Semantic Textual Similarity (STS) task. All features are evaluated with two types of datasets that belong to Bosch bug and Wikipedia article reports. This study aims to structure the recent research efforts by comparing NLU concepts for featuring semantics of text and applying it to IR. The main contribution of this paper is a comparative study of semantic similarity measurements. The experimental results demonstrate the Term Frequency–Inverse Document Frequency (TF-IDF) feature results on both datasets with reasonable vocabulary size. It indicates that the Bidirectional Long Short Term Memory (BiLSTM) can learn the structure of a sentence to improve the classification.


Sign in / Sign up

Export Citation Format

Share Document