scholarly journals Design and implement of pulse width modulation with low-cost hardware in the loop

Author(s):  
Qasim Al Azze ◽  
Mohammed Hasan Ali

<p>The paper presents a low-cost hardware in the loop based on Arduino. Sinusoidal Pulse Width Modulation (SPWM) designing, analyzing, and implementation is experimented as hardware in the loop. Sinusoidal Pulse Width Modulation implementation via MATLAB\Simulation demonstrates in this work. In this paper, Arduino Mega2560 platform, microcontroller, introduce as hardware. A comparative study of the both techniques is presented. Arduino interfaces with PC Target MATLAB environment. Three phases Voltage Source Inverter directs by the generated pulses that loads with three phases RLC. The obtaining output current and voltage waveform of RLC load of Hardware-in-the-Loop validates to the MATLAB\simulation output waveform. The compering shows the output waveforms are primarily having the same pattern. Arduino consider as the lost cost as microcontroller which could be used in real application.</p>

Author(s):  
Suroso Suroso ◽  
Daru Tri Nugroho ◽  
Toshihiko Noguchi

<p>A new dead-time compensation method of power inverter circuits is suggested and presented in this paper. The proposed method utilizes carrier based sinusoidal pulse width modulation technique to produce driving signals of the inverter power switches with dead-time correction capability. The proposed method able to eliminate dead-time effects such as reducing the waveform distortion of the inverter output current, and increasing the fundamental component amplitude of output current. An analysis of the proposed method is presented. Some computer simulations were carried out to investigate the principle operation, and to test performance of the new method. The developed method was validated through experimental test of H-bridge voltage source inverter circuits. The data obtained from the computer simulation and prototype experiments have confirmed that that the proposed method worked well compensating the dead-time in the voltage source power inverter circuits.</p>


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4352 ◽  
Author(s):  
Riccardo Mandrioli ◽  
Aleksandr Viatkin ◽  
Manel Hammami ◽  
Mattia Ricco ◽  
Gabriele Grandi

A complete analysis of the ac output current ripple in four-leg voltage source inverters considering multiple modulation schemes is provided. In detail, current ripple envelopes and peak-to-peak profiles have been determined in the whole fundamental period and a comprehensive method providing the current ripple rms has been achieved, all of them as a function of the modulation index. These characteristics have been determined for both phase and neutral currents, considering the most popular common-mode injection schemes. Particular attention has been paid to the performance of discontinuous pulse width modulation (DPWM) methods, including DPWMMAX and DPWMMIN, and their four most popular combinations DPWM0, DPWM1, DPWM2, and DPWM3. Furthermore, a comparison with a few continuous techniques (sinusoidal, centered pulse width modulations, and third harmonic injection) has been provided as well. Moreover, the average switching frequency and switching losses are analyzed, determining which PWM technique ensures minimum output current ripple within the linear modulation range at different assumptions. Numerical simulations and laboratory tests have been conducted to extensively verify all the analytical claims for all the considered PWM injections.


2021 ◽  
Vol 9 (04) ◽  
pp. 34-43
Author(s):  
K. Fernand Koffi ◽  
◽  
Agoua Raoule ◽  
Diety Landry ◽  
Georges Loum ◽  
...  

The need to use SPWM controlled voltage inverters in MV, led us to examine how to filter alternative signals with filters (L-C) and (RL-C). This allowed us to decide on the use of certain formulas for calculating the elements of these filters. Likewise, we have proposed a method of calculating the resistance R by mathematical iterations without using the quality factor Q, in order to obtain a low error rate between the RMS values and the fundamental effective values and THDs respecting the standard 519 IEEE - 2014. The results of these studies obtained using the MATLAB-SIMULINK software are presented in the penultimate session of this article. Nomenclature SPWM Sinusoidal Pulse-Width-Modulation THD Total Harmonic distortion SN Apparent power of the alternating load MV Medium voltage alternating voltage (1 kV --- 50 kV) Uph phase-to-phase voltage at the ac load RMS Root Mean Squared R L C Resistance Inductance Capacitor MVDC Medium voltage direct current VSI Voltage Source Inverter


Author(s):  
Shalini Vashishtha ◽  
Rekha K. R.

The realization of power electronic applications on hardware is a challenging task. The digital control circuit strategies are used to overcome the analog control strategies by providing great flexibility with simple equipment and higher switching frequencies. In this manuscript, an area optimized, modified digital space vector (DSV) pulse width modulation is designed and realized on low-cost FPGA. The modified digital space vector pulse width modulation (DSVPWM) uses a phase-locked loop (PLL) to generate clocks using the digital clock manager (DCM). These DCM clocks are used in the DSVPWM module to synchronize the other sub-modules. The voltage generation unit generates the three-phase (3-Ф) voltages and is used in the alpha-beta generation and sector determination unit. The reference active vectors are made by the reference generation unit and used in switching time calculation. The PWM pulses are generated using switching time generation, and lastly, the dead time occurrence unit generates the final SVPWM gate pulses. The modified DSVPWM is synthesized and implemented on Spartan-3E FPGA. The modified DSVPWM utilizes 17% slices, works at 102.45 MHz, and consumes 0.070 W total power. The simulation results and the resource utilization of modified DSVPWM are represented in detail. The modified DSVPWM is compared with existing PWM approaches on different Spartan-series FPGAs with better chip area improvement


2019 ◽  
Vol 8 (2) ◽  
pp. 4176-4180

This paper deals with theoretical and practical outlook related to implementation of a Digital signal processor (DSP) based on Sinusoidal Pulse Width Modulation (SPWM). For single phase inverter, sine wave is taken as reference signal and saw tooth is taken as carrier signal. It is developed by TMS320F28027 piccolo TM microcontroller with the help of simulink model. TI Texas instrument TMS320 is a blanket name for a series of DSP from Texas instrument. Through the TMS32010 processor which was faster in the DSP market and we use C2000 series microcontroller family with performance integrated peripherals designed for real – time control applications like motor drive control, industrial automation, solar and other renewable energy sources. The voltage source inverter is used in motor speed control and in solar, wind power grids. The system is verified by experimenting in simulation.


Sign in / Sign up

Export Citation Format

Share Document