scholarly journals Characterizing power transformer frequency responses using bipolar pseudo-random current impulses

Author(s):  
Fredrick Mwaniki ◽  
Ahmed A. Sayyid

The behaviour of a power transformer is complex and difficult to predict during transient conditions or during operation at frequencies below or above its nominal frequency, a phenomenon common in renewable energy plants due to harmonic distortion. Furthermore, the accuracy of a power system simulation depends on the models of critical subsystems such as the power transformers. This paper presents the use of a unique excitation waveform comprising of pseudo-random current impulses to accurately identify the wideband characteristics of a power transformer. By injecting the excitation waveform to the relevant transformer terminals, frequency responses are determined by cross-correlation of the perturbation signal, and the measured response. Compared to the traditional transformer identification methods, the pseudo-random current impulses offer a wideband excitation with a higher degree of controllability such that its spectral energy can be focused in the frequency band of interest. The proposed method was investigated on a 16 kVA, 22 kV/240 V single-phase transformer. The obtained wideband frequency responses provide useful information in harmonic penetration and over-voltage studies and are also used to estimate, with a high degree of accuracy, the lumped parameters of the equivalent transformer broadband circuit model.

Author(s):  
S Al-Ameri ◽  
M. F. M. Yousof ◽  
Norhafiz Azis ◽  
S. Avinash ◽  
M. A. Talib ◽  
...  

<span>Frequency response measurements are used for power transformer winding failures detection. The variation between frequency responses indicate mechanical changes in the transformer winding. One method to investigate winding failures in transformer is to develop a reliable circuit model which can simulate the frequency response of an actual winding. The main reason to use the model is because it is expensive to create damages on an actual winding. This paper proposes n-stages circuit ladder network to simulate the response of a winding which has unique design. It presents a new technique to calculate the resistance, inductance and capacitance of the winding. Then, the relationship between the RLC parameters and the frequency response is studied. The winding chosen in this investigation is a single phase 33kV transformer winding. The simulated frequency response was compared with the measured response to verify the proposed model. The model can give a comprehensive understanding about the effect of RLC parameters on the frequency response.</span>


Author(s):  
Arunesh Kumar Singh ◽  
Abhinav Saxena ◽  
Nathuni Roy ◽  
Umakanta Choudhury

In this paper, performance analysis of power system network is carried out by injecting the inter-turn fault at the power transformer. The injection of inter-turn fault generates the inrush current in the network. The power system network consists of transformer, current transformer, potential transformer, circuit breaker, isolator, resistance, inductance, loads, and generating source. The fault detection and termination related to inrush current has some drawbacks and limitations such as slow convergence rate, less stability and more distortion with the existing methods. These drawbacks motivate the researchers to overcome the drawbacks with new proposed methods using wavelet transformation with sample data control and fuzzy logic controller. The wavelet transformation is used to diagnose the fault type but contribute lesser for fault termination; due to that, sample data of different signals are collected at different frequencies. Further, the analysis of collected sample data is assessed by using Z-transformation and fuzzy logic controller for fault termination. The stability, total harmonic distortion and convergence rate of collected sample data among all three methods (wavelet transformation, Z-transformation and fuzzy logic controller) are compared for fault termination by using linear regression analysis. The complete performance of fault diagnosis along with fault termination has been analyzed on Simulink. It is observed that after fault injection at power transformer, fault recovers faster under fuzzy logic controller in comparison with Z-transformation followed by wavelet transformation due to higher stability, less total harmonic distortion and faster convergence.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Jürgen Dersch ◽  
Peter Schwarzbözl ◽  
Timo Richert

An existing software tool for annual performance calculation of concentrating solar power and other renewable energy plants has been extended to enable the simulation of solar tower power plants. The methodology used is shown and a demonstrative example of a 50 MWe tower plant in southern Spain is given. The influence of design power and latitude on solar field layout is discussed. Furthermore, a comparison of the tower plant with a 50 MWe parabolic trough and a Linear Fresnel plant at the same site is given.


2021 ◽  
Vol 2 (2) ◽  
pp. 22-28
Author(s):  
Vasily S. LARIN ◽  
◽  
Daniil A. MATVEEV ◽  

In the first part of the article, based on the results of theoretical studies performed for a simplified transformer winding equivalent scheme, it was shown that the damping factors can be estimated from the width of the resonant peaks of the frequency responses of the module and the reactive component of the voltage at the midpoint of the equivalent scheme, as well as the active component of the input admittance and neutral current of the considered resonant scheme. In this part of the article, the practical possibility of applying the obtained theoretical relations between the damping factors and the width of resonant peaks in relation to the frequency responses of power transformer windings is considered. The results of calculations of the damping factors at the two power transformers made by using the fitting of the free component of transient voltage and by determining the width of the resonance peaks of the active component of winding neutral current and the voltage transfer function, corresponding to intermediate points of the winding. It is shown that the evaluation of the values of the winding damping factors can be performed as a byproduct of transformer condition assessment by frequency response analysis (FRA).


Author(s):  
N. B. Ngang ◽  
N. E. Aneke

There have been incessant power failures in our power network, which has arisen as a result of over current, over voltage, harmonic distortion caused by ripples to mention a few, This could be overcome by determining the harmonic mean from a given harmonic distortion data ,optimizing the mean from a given distortion data, training the optimized result to minimize harmonic in power distribution transformer, designing a Simulink model for mitigating the resultant effect of harmonics which are the sinusoidal components of a complex wave, using simplex optimizationtechnique. The optimization technique used is 69% better than the conventional method like proportional integral derivative (PID) in terms of minimizing harmonic in power transformer.


Sign in / Sign up

Export Citation Format

Share Document