scholarly journals FPGA based co-design of a speed fuzzy logic controller applied to an autonomous car

Author(s):  
Emna Aridhi ◽  
Decebal Popescu ◽  
Abdelkader Mami

This paper invests in FPGA technology to control the speed of an autonomous car using fuzzy logic. For that purpose, we propose a co-design based on a novel fuzzy controller IP. It was developed using the hardware language VHDL and driven by the Zynq processor through an SDK software design written in C. The proposed IP acts according to the ambient temperature and the presence or absence of an obstacle and its distance from the car. The partitioning of the co-design tasks divides them into hardware and software parts. The simulation results of the fuzzy IP and those of the complete co-design implementation on a Xilinx Zynq board showed the effectiveness of the proposed controller to meet the target constraints and generate suitable PWM signals. The proposed hardware architecture based on 6-LUT blocks uses 11 times fewer logic resources than other previous similar designs. Also, it can be easily updated when new constraints on the system are to be considered, which makes it suitable for many related applications. Fuzzy computing was accelerated thanks to the use of digital signal processing blocks that ensure parallel processing. Indeed, a complete execution cycle takes only 7 us.

Author(s):  
Kevin J. Gorman ◽  
Kourosh J. Rahnamai

Abstract The rapid prototyping of fuzzy logic controllers is accomplished by using the tools Matlab, Simulink, Fuzzy Logic Toolkit, and Real-Time Workshop. Device drivers were developed for Simulink for interfacing with DT2801 and DT2821 data acquisition boards. The fuzzy logic inference engine for the Fuzzy Logic Toolkit was modified to allow the systems to work as independent programs and to be downloadable to DSP (Digital Signal Processing) boards. Simulink is used to graphically implement fuzzy logic controllers. The Real-Time Workshop is used to compile blocks from Simulink into C code, then into an independent executable program, both on the PC and a dSpace DSP (Digital Signal Processing) board. Graphical interfaces are created and debugged by using dSPACE’s tools, Cockpit and Trace. By combining these tools, real-time fuzzy logic controllers are developed in laboratory environments.


Author(s):  
Muppineni Sravanthi

Network traffic management is a core area of research that is of great importance in the field of communication. This paper proposes a new scheme for controlling router side traffic in networks by updating source sending rate according to its IQ size. A new fuzzy controller is to be modelled to implement the proposed system. Simulation results and comparisons has verified the effectiveness and showed that our proposed scheme can achieve better performances than the existing protocols.


Author(s):  
R.Samuel Rajesh Babu

<div class="Section1"><p class="papertitle">This paper presents a comparative analysis of Integrated boost flyback converter for Renewable energy System. IBFC is the combination of boost converter and fly back converter. The proposed converter is simulated in open and closed loop using PID and FUZZY controller. The Fuzzy Logic Controller (FLC) is used reduce the rise time, settling time to almost negligible and try to remove the delay time and inverted response. The performance of IBFC with fuzzy logic controller  is found better instead of PID controller. The simulation results are verified experimentally and  the output of converter is free from ripples and has regulated output voltage.</p></div>


Author(s):  
Said Wahsh ◽  
Y. Ahmed ◽  
Abo Elzahab

This paper presents interval type-2 fuzzy logic (IT2FL) controller applied on a direct torque controlled (DTC) permanent magnet synchronous motor (PMSM), using digital signal processing (DSP). The simulation of PMSM with space vector pulse widths modulation (SVPWM) inverter presented under several operating condition. To verify the simulation results a hard ware setup is prepared and tested at several operating conditions using dspace 1102 DSP model.  The experimental and simulation results are in agreement and the torque dynamic response is very rapid and the system achieves the steady state in a very short time.


Sign in / Sign up

Export Citation Format

Share Document