scholarly journals Flight-Path Tracking Control of an Aircraft Using Backstepping Controller

2015 ◽  
Vol 15 (2) ◽  
pp. 270
Author(s):  
Labane Chrif ◽  
Zemalache Meguenni Kada ◽  
Tahar Mohamed

For transportation aircraft, the primary control objective for an autopilot system engaged during approach and landing is relative to the flight path tracking on the basis of highly simplified linear models of flight dynamics. The dynamics governing the flight path of an aircraft are in general highly nonlinear and involve complex physics for which no accurate models are available. In this paper a nonlinear model describing the longitudinal equations of motion in strick feedback form is derived. Backstepping is utilized for the construction of a globally stabilizing controller with a number of free parameters. It is implemented a controller with an internal loop controls involving the pitch rate of the aircraft and an external loop which includes angle of attack, path angle and pitch angle. Finally, nonlinear simulation results for a longitudinal model of a transportation aircraft are displayed and discussed.

Author(s):  
Patrick J. O’Heron ◽  
Parviz E. Nikravesh ◽  
Ara Arabyan ◽  
Donald L. Kunz

Abstract A model is presented that can be used to simulate the highly nonlinear transient dynamics associated with advanced rotorcraft conversion processes. Multibody equations of motion of the fuselage, the tilting wing, and the rotor assembly are derived using a minimal set of coordinates. An enhanced aerodynamics model is employed to account for unsteadiness and nonlinearity in the near-wake aerodynamics, with a dynamic uniform inflow to compute the far-wake aerodynamics, and a flight control system is employed to compute the blade pitch settings that are necessary to achieve a desired flight path. The model is subjected to a demanding flight path simulation to illustrate that it can perform vertical take-off, hover, tilt-wing conversion, and high-speed forward flight maneuvers effectively.


Author(s):  
Francisco González ◽  
Pierangelo Masarati ◽  
Javier Cuadrado ◽  
Miguel A. Naya

Formulating the dynamics equations of a mechanical system following a multibody dynamics approach often leads to a set of highly nonlinear differential-algebraic equations (DAEs). While this form of the equations of motion is suitable for a wide range of practical applications, in some cases it is necessary to have access to the linearized system dynamics. This is the case when stability and modal analyses are to be carried out; the definition of plant and system models for certain control algorithms and state estimators also requires a linear expression of the dynamics. A number of methods for the linearization of multibody dynamics can be found in the literature. They differ in both the approach that they follow to handle the equations of motion and the way in which they deliver their results, which in turn are determined by the selection of the generalized coordinates used to describe the mechanical system. This selection is closely related to the way in which the kinematic constraints of the system are treated. Three major approaches can be distinguished and used to categorize most of the linearization methods published so far. In this work, we demonstrate the properties of each approach in the linearization of systems in static equilibrium, illustrating them with the study of two representative examples.


Author(s):  
Alexander Olshevskiy ◽  
Oleg Dmitrochenko ◽  
Chang-Wan Kim

The present paper contributes to the field of flexible multibody systems dynamics. Two new solid finite elements employing the absolute nodal coordinate formulation are presented. In this formulation, the equations of motion contain a constant mass matrix and a vector of generalized gravity forces, but the vector of elastic forces is highly nonlinear. The proposed solid eight node brick element with 96 degrees of freedom uses translations of nodes and finite slopes as sets of nodal coordinates. The displacement field is interpolated using incomplete cubic polynomials providing the absence of shear locking effect. The use of finite slopes describes the deformed shape of the finite element more exactly and, therefore, minimizes the number of finite elements required for accurate simulations. Accuracy and convergence of the finite element is demonstrated in nonlinear test problems of statics and dynamics.


Author(s):  
Seyed Mahdi Abtahi

Interactions of the orbital motion on attitude dynamics of the gyrostat satellite are considered in this paper. The mathematical model is derived using the Hamiltonian method for the spin-orbit motion of the spacecraft followed by the reduction of the coupled equations of motion using the extended Deprit canonical transformation. The analytical Melnikov method is used innovatively to study chaos on the complex Spin-Orbit dynamics of the gyrostat satellite. Also, the numerical methods such as Lyapunov exponent criterion, Poincaré section, trajectories of phase portrait, and the time–history responses can be proved the heteroclinic bifurcation and chaotic vibrations in the highly nonlinear system. Using the results based on the Melnikov integral, the parameters of the spacecraft including the mass and inertia moment of satellite with respect to the altitude of orbit can be designed in order to control the bifurcation with a view to prevention of chaos in the system in the absence of an active control system.


1980 ◽  
Vol 102 (3) ◽  
pp. 249-256 ◽  
Author(s):  
A. I. Soler

Design methods for full face gaskets in bolted pressure vessel joints have received little attention in the literature. Such gasketed joints play a prominent role in attaching rectangular plan from water boxes to rectangular tubesheets in condenser water boxes. With higher cooling water pressures becoming evident due to cooling tower circuits, the water box-tubesheet structure, and its bolted joint connection requires rigorous analysis for both structural integrity and leak tightness. Although it is well known that gasket material has a highly nonlinear stress strain behavior, very few analyses are available to calculate and evaluate the effect of the nonlinear gasket behavior in a bolted joint connection. In this paper, an approximate method for simultaneously analyzing structural integrity and leak tightness of typical bolted flange connections with nonlinear gasket material is developed. The flange is modeled as an elastic element, the bolt is simulated by a linear spring with bending and extensional resistance, and the gasket is modeled by a series of nonlinear compression springs. A simple nonlinear stress-strain relation for initial loading and unloading of the gasket is developed based on experimental data. The analysis technique employs an incremental procedure which follows the configuration through preloading and pressurization and checks structural integrity and gasket leakage. To illustrate the method, a typical full face gasket and flange construction is studied, and the effect of gasket properties on the final state is investigated. A series of simulation results are obtained which illustrate clearly the effect of gasket prestrain, undersizing of bolts, and wall rotational resistance. Of particular importance is a simulation comparing results obtained using actual nonlinear gasket stress-strain data with results obtained using linear models for the gasket. It is demonstrated that for full face gasket configurations, simulation of the nonlinear behavior is required to achieve accurate results. The procedure developed in this work is ideal for optimization of flange gasket configurations because of its cost effectiveness while simultaneously evaluating the interaction between structural integrity and joint leak tightness.


1995 ◽  
Vol 09 (13n14) ◽  
pp. 1611-1637 ◽  
Author(s):  
J.M. DIXON ◽  
J.A. TUSZYŃSKI

A brief account of the Method of Coherent Structures (MCS) is presented using a plane-wave basis to define a quantum field. It is also demonstrated that the form of the quantum field equations, obtained by MCS, although highly nonlinear for many-body systems with two-body interactions, is independent of the basis of states used for the definition of the field.


2017 ◽  
Vol 2017 ◽  
pp. 1-22 ◽  
Author(s):  
M. A. Santos ◽  
B. S. Rego ◽  
G. V. Raffo ◽  
A. Ferramosca

This work proposes a control strategy to solve the path tracking problem of a suspended load carried by a tilt-rotor unmanned aerial vehicle (UAV). Initially, the equations of motion for the multibody mechanical system are derived from the load’s perspective by means of the Euler-Lagrange formulation, in which the load’s position and orientation are chosen as degrees of freedom. An unscented Kalman filter (UKF) is designed for nonlinear state estimation of all the system states, assuming that available information is provided by noisy sensors with different sampling rates that do not directly measure the load’s attitude. Furthermore, a model predictive control (MPC) strategy is proposed for path tracking of the suspended load with stabilization of the tilt-rotor UAV when parametric uncertainties and external disturbances affect the load, the rope’s length and total system mass vary during taking-off and landing, and the desired yaw angle changes throughout the trajectory. Finally, numerical experiments are presented to corroborate the good performance of the proposed strategy.


Author(s):  
Mohammad R Fazel ◽  
Majid M Moghaddam ◽  
Javad Poshtan

Analysis of a flexible manipulator as an initial value problem, due to its large deformations, involves nonlinear ordinary differential equations of motion. In the present work, these equations are solved through the general Frechet derivatives and the generalized differential quadrature (GDQ) method directly. The results so obtained are compared with those of the fourth-order Runge–Kutta method. It is seen that both the results match each other well. Further considering the same manipulator as a boundary value problem, its governing equation is a highly nonlinear partial differential equation. Again applying the general Frechet derivatives and the GDQ method, it is seen that the results are in good match with the linear theory. In both cases, the general Frechet derivatives are introduced and successfully used for linearization. The results of the present study indicate that the GDQ method combined with the general Frechet derivatives can be successfully used for the solution of nonlinear differential equations.


Author(s):  
O. F. Qi ◽  
N. R. L. Maccallum ◽  
P. J. Gawthrop

This paper describes the design of a closed-loop nonlinear controller to improve the dynamic response of a single-spool gas turbine engine. The nonlinear controller is obtained by scheduling the gains of multivariable compensators as a function of engine non-dimensional shaft speed. The compensators, whose outputs are fuel flow and nozzle area, are designed using optimal control theory based on a set of linear models generated from a nonlinear engine simulation. Investigations are also made into developing simple algorithms to obtain an analytical expression for the compressor given its characteristic. The detailed process of developing a nonlinear simulation model for the engine is also described. The open-loop fuel controller is studied using the digital simulation.


Sign in / Sign up

Export Citation Format

Share Document