Extra- and intracellular innate immune recognition in endothelial cells

2007 ◽  
Vol 98 (08) ◽  
pp. 319-326 ◽  
Author(s):  
Stefan Hippenstiel ◽  
Julia Eitel ◽  
Norbert Suttorp ◽  
Bastian Opitz

SummaryThe innate immune system represents the principal sensor of infections in multicellular organisms and might also mediate responses to some endogenous molecules. In this context, endothelial cells are among the first cells coming into contact with microbial or endogenous (danger-associated) molecules or whole pathogens entering the bloodstream. Since many bacteria and viruses invade the endothelium, endothelial cells are equipped with both extracellular and cytosolic surveillance systems capable of sensing microbial components, and endogenous danger-associated molecules. The receptor molecules, called pattern recognition receptors (PRRs), are classified as transmembrane or cytosolic molecules. While the transmembrane PRRs recognize extracellular and membrane-enclosed foreign organisms, the cytosolic PRRs appear to sense intracellular infections. Here we focus on both PRR classes in general, and outline the current knowledge of extra- and intracellular pattern recognition in endothelial cells and its potential role in vascular diseases and sepsis.

2009 ◽  
Vol 102 (12) ◽  
pp. 1103-1109 ◽  
Author(s):  
Julia Eitel ◽  
Karolin Meixenberger ◽  
Norbert Suttorp ◽  
Bastian Opitz

SummaryBacteraemia and viraemia are characterised by pathogens entering the bloodstream. Endothelial cells are among the first cells coming into contact with the microbes and also some endogenous molecules which are released by tissue damage. As part of the innate immune system, endothelial cells respond to these contacts by producing inflammatory mediators and expressing surface molecules. The initial sensing of microbial and endogenous danger-associated molecules is mediated by so-called pattern recognition receptors (PRRs). PRRs can be classified in different protein families such as the Toll-like receptors, the NODlike receptors and the RIG-I-like receptors. By activating inflammatory gene transcription and posttranslational processing, PRRs control the immediate innate immune reaction and also the subsequent adaptive immune response. Here we describe the current knowledge of extra-and intracellular PRRs in endothelial cells and their potential role in sepsis and vascular diseases.


2002 ◽  
Vol 30 (Supplement) ◽  
pp. S207-S213 ◽  
Author(s):  
Philipp Henneke ◽  
Douglas T. Golenbock

Author(s):  
Jocelyn Reader ◽  
Sarah Lynam ◽  
Amy Harper ◽  
Gautam Rao ◽  
Maya Matheny ◽  
...  

Ovarian adenocarcinoma is typified by detection at late stages with dissemination of cancer cells into the peritoneal cavity and frequent acquisition of chemoresistance. A number of studies show the importance of the tumor microenvironment and innate immune recognition in tumor progression. Ovarian cancer cells can regulate the composition of their stroma to promote the formation of ascitic fluid rich in cytokines and bioactive lipids such as PGE2, and to stimulate the differentiation of stromal cells into a pro-tumoral phenotype. In response, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, tumor-associated macrophages, and other peritoneal cells can act through direct and indirect mechanisms to regulate tumor growth, chemoresistance via alteration of class III β‎ tubulin, angiogenesis and dissemination. This chapter deciphers the current knowledge about the role of stromal cells, associated secreted factors, and the immune system on tumor progression. This suggests that targeting the microenvironment holds great potential to improve the prognosis of patients with ovarian adenocarcinoma.


2020 ◽  
Vol 25 (42) ◽  
pp. 4510-4522 ◽  
Author(s):  
Biancamaria Longoni ◽  
Irene Fasciani ◽  
Shivakumar Kolachalam ◽  
Ilaria Pietrantoni ◽  
Francesco Marampon ◽  
...  

: Exosomes are extracellular vesicles produced by eukaryotic cells that are also found in most biological fluids and tissues. While they were initially thought to act as compartments for removal of cellular debris, they are now recognized as important tools for cell-to-cell communication and for the transfer of pathogens between the cells. They have attracted particular interest in neurodegenerative diseases for their potential role in transferring prion-like proteins between neurons, and in Parkinson’s disease (PD), they have been shown to spread oligomers of α-synuclein in the brain accelerating the progression of this pathology. A potential neuroprotective role of exosomes has also been equally proposed in PD as they could limit the toxicity of α-synuclein by clearing them out of the cells. Exosomes have also attracted considerable attention for use as drug vehicles. Being nonimmunogenic in nature, they provide an unprecedented opportunity to enhance the delivery of incorporated drugs to target cells. In this review, we discuss current knowledge about the potential neurotoxic and neuroprotective role of exosomes and their potential application as drug delivery systems in PD.


Sign in / Sign up

Export Citation Format

Share Document