Natural inhibitors of thrombin

2014 ◽  
Vol 111 (04) ◽  
pp. 583-589 ◽  
Author(s):  
James Huntington

SummaryThe serine protease thrombin is the effector enzyme of blood coagulation. It has many activities critical for the formation of stable clots, including cleavage of fibrinogen to fibrin, activation of platelets and conversion of procofactors to active cofactors. Thrombin carries-out its multiple functions by utilising three special features: a deep active site cleft and two anion binding exosites (exosite I and II). Similarly, thrombin inhibitors have evolved to exploit the unique features of thrombin to achieve rapid and specific inactivation of thrombin. Exogenous thrombin inhibitors come from several different protein families and are generally found in the saliva of haematophagous animals (blood suckers) as part of an anticoagulant cocktail that allows them to feed. Crystal structures of several of these inhibitors reveal how peptides and proteins can be targeted to thrombin in different and interesting ways. Thrombin activity must also be regulated by endogenous inhibitors so that thrombi do not occlude blood flow and cause thrombosis. A single protein family, the serpins, provides all four of the endogenous thrombin inhibitors found in man. The crystal structures of these serpins bound to thrombin have been solved, revealing a similar exosite-dependence on complex formation. In addition to forming the recognition complex, serpins destroy the structure of thrombin, allowing them to be released from cofactors and substrates for clearance. This review examines how the special features of thrombin have been exploited by evolution to achieve inhibition of the ultimate coagulation protease.

1997 ◽  
Vol 77 (03) ◽  
pp. 498-503 ◽  
Author(s):  
D Prasa ◽  
L Svendsen ◽  
J Stürzebecher

SummaryIn a thrombin generation test with continuous registration of thrombin activity in plasma we studied the ability of a variety of thrombin inhibitors of different type and mechanism of action to influence the activity of thrombin after activation of the coagulation system. Depending on the inhibitor, the peak of thrombin activity is delayed and/or reduced.By blocking the active site of generated thrombin inhibitors cause a concentration dependent reduction of the thrombin peak and inhibit feed-back reactions of thrombin resulting in a delay of thrombin generation. Highly potent synthetic active-site directed inhibitors (Ki ≤ 20 nM) reduce the thrombin activity formed in plasma after extrinsic or intrinsic activation with the same efficiency (IC50 0.1 - 0.6 μM) as hirudin. The delay and reduction of thrombin generation by inhibitors of the anion-binding exosite 1 of thrombin is only attributed to an inhibition of feed-back reactions of thrombin. For a 50% reduction of thrombin activity in plasma by this type of inhibitors relatively high concentrations were determined.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Sara Pintar ◽  
Jure Borišek ◽  
Aleksandra Usenik ◽  
Andrej Perdih ◽  
Dušan Turk

AbstractTo achieve productive binding, enzymes and substrates must align their geometries to complement each other along an entire substrate binding site, which may require enzyme flexibility. In pursuit of novel drug targets for the human pathogen S. aureus, we studied peptidoglycan N-acetylglucosaminidases, whose structures are composed of two domains forming a V-shaped active site cleft. Combined insights from crystal structures supported by site-directed mutagenesis, modeling, and molecular dynamics enabled us to elucidate the substrate binding mechanism of SagB and AtlA-gl. This mechanism requires domain sliding from the open form observed in their crystal structures, leading to polysaccharide substrate binding in the closed form, which can enzymatically process the bound substrate. We suggest that these two hydrolases must exhibit unusual extents of flexibility to cleave the rigid structure of a bacterial cell wall.


2020 ◽  
pp. jbc.RA120.016265
Author(s):  
Simon S. Terzyan ◽  
Luong T. Nguyen ◽  
Anthony W.G. Burgett ◽  
Annie Heroux ◽  
Clyde A Smith ◽  
...  

Overexpression of γ-glutamyl transpeptidase(GGT1) has been implicated in an array of humandiseases including asthma, reperfusion injury,and cancer. Inhibitors are needed for therapy, butdevelopment of potent, specific inhibitors ofGGT1 has been hampered by a lack of structuralinformation regarding substrate binding andcleavage. To enhance our understanding of themolecular mechanism of substrate cleavage, wehave solved the crystal structures of humanGGT1 (hGGT1) with glutathione (a substrate)and a phosphate-glutathione analog (anirreversible inhibitor) bound in the active site.These are the first structures of any eukaryoticGGT with the cysteinylglycine region of thesubstrate-binding site occupied. These structuresand the structure of apo-hGGT reveal movementof amino acid residues within the active site as thesubstrate binds. Asn-401 and Thr-381 each formhydrogen bonds with two atoms of GSH spanningthe γ-glutamyl bond. Three different atoms ofhGGT1 interact with the carboxyl-oxygen of thecysteine of GSH. Interactions between theenzyme and substrate change as the substratemoves deeper into the active site cleft. Thesubstrate reorients and a new hydrogen bond isformed between the substrate and the oxyanionhole. Thr-381 is locked into a singleconformation as an acyl bond forms between thesubstrate and the enzyme. These data provideinsight on a molecular level into the substratespecificity of hGGT1 and provide an explanationfor seemingly disparate observations regardingthe enzymatic activity of hGGT1 mutants. Thisknowledge will aid in the design of clinicallyuseful hGGT1 inhibitors.


2006 ◽  
Vol 188 (3) ◽  
pp. 1143-1154 ◽  
Author(s):  
Sarah H. Lawrence ◽  
Kelvin B. Luther ◽  
Hermann Schindelin ◽  
James G. Ferry

ABSTRACT Phosphotransacetylase (EC 2.3.1.8) catalyzes reversible transfer of the acetyl group from acetyl phosphate to coenzyme A (CoA), forming acetyl-CoA and inorganic phosphate. Two crystal structures of phosphotransacetylase from the methanogenic archaeon Methanosarcina thermophila in complex with the substrate CoA revealed one CoA (CoA1) bound in the proposed active site cleft and an additional CoA (CoA2) bound at the periphery of the cleft. The results of isothermal titration calorimetry experiments are described, and they support the hypothesis that there are distinct high-affinity (equilibrium dissociation constant [KD ], 20 μM) and low-affinity (KD , 2 mM) CoA binding sites. The crystal structures indicated that binding of CoA1 is mediated by a series of hydrogen bonds and extensive van der Waals interactions with the enzyme and that there are fewer of these interactions between CoA2 and the enzyme. Different conformations of the protein observed in the crystal structures suggest that domain movements which alter the geometry of the active site cleft may contribute to catalysis. Kinetic and calorimetric analyses of site-specific replacement variants indicated that there are catalytic roles for Ser309 and Arg310, which are proximal to the reactive sulfhydryl of CoA1. The reaction is hypothesized to proceed through base-catalyzed abstraction of the thiol proton of CoA by the adjacent and invariant residue Asp316, followed by nucleophilic attack of the thiolate anion of CoA on the carbonyl carbon of acetyl phosphate. We propose that Arg310 binds acetyl phosphate and orients it for optimal nucleophilic attack. The hypothesized mechanism proceeds through a negatively charged transition state stabilized by hydrogen bond donation from Ser309.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthias Zeug ◽  
Nebojsa Markovic ◽  
Cristina V. Iancu ◽  
Joanna Tripp ◽  
Mislav Oreb ◽  
...  

AbstractHydroxybenzoic acids, like gallic acid and protocatechuic acid, are highly abundant natural compounds. In biotechnology, they serve as critical precursors for various molecules in heterologous production pathways, but a major bottleneck is these acids’ non-oxidative decarboxylation to hydroxybenzenes. Optimizing this step by pathway and enzyme engineering is tedious, partly because of the complicating cofactor dependencies of the commonly used prFMN-dependent decarboxylases. Here, we report the crystal structures (1.5–1.9 Å) of two homologous fungal decarboxylases, AGDC1 from Arxula adenivorans, and PPP2 from Madurella mycetomatis. Remarkably, both decarboxylases are cofactor independent and are superior to prFMN-dependent decarboxylases when heterologously expressed in Saccharomyces cerevisiae. The organization of their active site, together with mutational studies, suggests a novel decarboxylation mechanism that combines acid–base catalysis and transition state stabilization. Both enzymes are trimers, with a central potassium binding site. In each monomer, potassium introduces a local twist in a β-sheet close to the active site, which primes the critical H86-D40 dyad for catalysis. A conserved pair of tryptophans, W35 and W61, acts like a clamp that destabilizes the substrate by twisting its carboxyl group relative to the phenol moiety. These findings reveal AGDC1 and PPP2 as founding members of a so far overlooked group of cofactor independent decarboxylases and suggest strategies to engineer their unique chemistry for a wide variety of biotechnological applications.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Charlotte A. Softley ◽  
Krzysztof M. Zak ◽  
Mark J. Bostock ◽  
Roberto Fino ◽  
Richard Xu Zhou ◽  
...  

ABSTRACT Multidrug resistance among Gram-negative bacteria is a major global public health threat. Metallo-β-lactamases (MBLs) target the most widely used antibiotic class, the β-lactams, including the most recent generation of carbapenems. Interspecies spread renders these enzymes a serious clinical threat, and there are no clinically available inhibitors. We present the crystal structures of IMP-13, a structurally uncharacterized MBL from the Gram-negative bacterium Pseudomonas aeruginosa found in clinical outbreaks globally, and characterize the binding using solution nuclear magnetic resonance spectroscopy and molecular dynamics simulations. The crystal structures of apo IMP-13 and IMP-13 bound to four clinically relevant carbapenem antibiotics (doripenem, ertapenem, imipenem, and meropenem) are presented. Active-site plasticity and the active-site loop, where a tryptophan residue stabilizes the antibiotic core scaffold, are essential to the substrate-binding mechanism. The conserved carbapenem scaffold plays the most significant role in IMP-13 binding, explaining the broad substrate specificity. The observed plasticity and substrate-locking mechanism provide opportunities for rational drug design of novel metallo-β-lactamase inhibitors, essential in the fight against antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document