scholarly journals Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase

2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Charlotte A. Softley ◽  
Krzysztof M. Zak ◽  
Mark J. Bostock ◽  
Roberto Fino ◽  
Richard Xu Zhou ◽  
...  

ABSTRACT Multidrug resistance among Gram-negative bacteria is a major global public health threat. Metallo-β-lactamases (MBLs) target the most widely used antibiotic class, the β-lactams, including the most recent generation of carbapenems. Interspecies spread renders these enzymes a serious clinical threat, and there are no clinically available inhibitors. We present the crystal structures of IMP-13, a structurally uncharacterized MBL from the Gram-negative bacterium Pseudomonas aeruginosa found in clinical outbreaks globally, and characterize the binding using solution nuclear magnetic resonance spectroscopy and molecular dynamics simulations. The crystal structures of apo IMP-13 and IMP-13 bound to four clinically relevant carbapenem antibiotics (doripenem, ertapenem, imipenem, and meropenem) are presented. Active-site plasticity and the active-site loop, where a tryptophan residue stabilizes the antibiotic core scaffold, are essential to the substrate-binding mechanism. The conserved carbapenem scaffold plays the most significant role in IMP-13 binding, explaining the broad substrate specificity. The observed plasticity and substrate-locking mechanism provide opportunities for rational drug design of novel metallo-β-lactamase inhibitors, essential in the fight against antibiotic resistance.

2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ørjan Samuelsen ◽  
Ove Alexander Høgmoen Åstrand ◽  
Christopher Fröhlich ◽  
Adam Heikal ◽  
Susann Skagseth ◽  
...  

ABSTRACT Carbapenem-resistant Gram-negative pathogens are a critical public health threat and there is an urgent need for new treatments. Carbapenemases (β-lactamases able to inactivate carbapenems) have been identified in both serine β-lactamase (SBL) and metallo-β-lactamase (MBL) families. The recent introduction of SBL carbapenemase inhibitors has provided alternative therapeutic options. Unfortunately, there are no approved inhibitors of MBL-mediated carbapenem-resistance and treatment options for infections caused by MBL-producing Gram-negatives are limited. Here, we present ZN148, a zinc-chelating MBL-inhibitor capable of restoring the bactericidal effect of meropenem and in vitro clinical susceptibility to carbapenems in >98% of a large international collection of MBL-producing clinical Enterobacterales strains (n = 234). Moreover, ZN148 was able to potentiate the effect of meropenem against NDM-1-producing Klebsiella pneumoniae in a murine neutropenic peritonitis model. ZN148 showed no inhibition of the human zinc-containing enzyme glyoxylase II at 500 μM, and no acute toxicity was observed in an in vivo mouse model with cumulative dosages up to 128 mg/kg. Biochemical analysis showed a time-dependent inhibition of MBLs by ZN148 and removal of zinc ions from the active site. Addition of exogenous zinc after ZN148 exposure only restored MBL activity by ∼30%, suggesting an irreversible mechanism of inhibition. Mass-spectrometry and molecular modeling indicated potential oxidation of the active site Cys221 residue. Overall, these results demonstrate the therapeutic potential of a ZN148-carbapenem combination against MBL-producing Gram-negative pathogens and that ZN148 is a highly promising MBL inhibitor that is capable of operating in a functional space not presently filled by any clinically approved compound.


2014 ◽  
Vol 58 (12) ◽  
pp. 7484-7491 ◽  
Author(s):  
Kristen M. Lamb ◽  
Michael N. Lombardo ◽  
Jeremy Alverson ◽  
Nigel D. Priestley ◽  
Dennis L. Wright ◽  
...  

ABSTRACTResistance to the antibacterial antifolate trimethoprim (TMP) is increasing in members of the familyEnterobacteriaceae, driving the design of next-generation antifolates effective against these Gram-negative pathogens. The propargyl-linked antifolates are potent inhibitors of dihydrofolate reductases (DHFR) from several TMP-sensitive and -resistant species, includingKlebsiella pneumoniae. Recently, we have determined that these antifolates inhibit the growth of strains ofK. pneumoniae, some with MIC values of 1 μg/ml. In order to further the design of potent and selective antifolates against members of theEnterobacteriaceae, we determined the first crystal structures ofK. pneumoniaeDHFR bound to two of the propargyl-linked antifolates. These structures highlight that interactions with Leu 28, Ile 50, Ile 94, and Leu 54 are necessary for potency; comparison with structures of human DHFR bound to the same inhibitors reveal differences in residues (N64E, P61G, F31L, and V115I) and loop conformations (residues 49 to 53) that may be exploited for selectivity.


2020 ◽  
Vol 65 (1) ◽  
pp. e01385-20
Author(s):  
T. Parks Remcho ◽  
Sravanthi D. Guggilapu ◽  
Phillip Cruz ◽  
Glenn A. Nardone ◽  
Gavin Heffernan ◽  
...  

ABSTRACTWR99210, a former antimalarial drug candidate now widely used for the selection of Plasmodium transfectants, selectively targets the parasite’s dihydrofolate reductase thymidine synthase bifunctional enzyme (DHFR-TS) but not human DHFR, which is not fused with TS. Accordingly, WR99210 and plasmids expressing the human dhfr gene have become valued tools for the genetic modification of parasites in the laboratory. Concerns over the ineffectiveness of WR99210 from some sources encouraged us to investigate the biological and chemical differences of supplies from two different companies (compounds 1 and 2). Compound 1 proved effective at low nanomolar concentrations against Plasmodium falciparum parasites, whereas compound 2 was ineffective, even at micromolar concentrations. Intact and fragmented mass spectra indicated identical molecular formulae of the unprotonated (free base) structures of compounds 1 and 2; however, the compounds displayed differences by thin-layer chromatography, reverse-phase high-performance liquid chromatography, and UV-visible spectroscopy, indicating important isomeric differences. Structural evaluations by 1H, 13C, and 15N nuclear magnetic resonance spectroscopy confirmed compound 1 as WR99210 and compound 2 as a dihydrotriazine regioisomer. Induced fit computational docking models showed that compound 1 binds tightly and specifically in the P. falciparum DHFR active site, whereas compound 2 fits poorly to the active site in loose and varied orientations. Stocks and concentrates of WR99210 should be monitored for the presence of regioisomer 2, particularly when they are not supplied as the hydrochloride salt or are exposed to basic conditions that may promote rearrangement. Absorption spectroscopy can serve for assays of the unrearranged and rearranged triazines.


2019 ◽  
Vol 75 (3) ◽  
pp. 308-316
Author(s):  
Richa Agrawal ◽  
Rahul Singh ◽  
Ashwani Kumar ◽  
Amit Kumar ◽  
Ravindra D. Makde

Pyrrolidone-carboxylate peptidase (PCP) catalyzes the removal of an unusual amino acid, L-pyroglutamate (pG), from the N-termini of peptides and proteins. It has implications in the functional regulation of different peptides in both prokaryotes and eukaryotes. However, the pG-recognition mechanism of the PCP enzyme remains largely unknown. Here, crystal structures of PCP I from Deinococcus radiodurans (PCPdr) are reported in pG-free and pG-bound forms at resolutions of 1.73 and 1.55 Å, respectively. Four protomers in PCPdr form a tetrameric structure. The residues responsible for recognizing the pG residue are mostly contributed by a flexible loop (loop A) that is present near the active site. These residues are conserved in all known PCPs I, including those from mammals. Phe9 and Phe12 of loop A form stacking interactions with the pyrrolidone ring of pG, while Asn18 forms a hydrogen bond to OE of pG. The main chain of a nonconserved residue, Leu71, forms two hydrogen bonds to NH and OE of pG. Thus, pG is recognized in the S1 substrate subsite of the enzyme by both van der Waals and polar interactions, which provide specificity for the pG residue of the peptide. In contrast to previously reported PCP I structures, the PCPdr tetramer is in a closed conformation with an inaccessible active site. The structures show that the active site can be accessed by the substrates via disordering of loop A. This disordering could also prevent product inhibition by releasing the bound pG product from the S1 subsite, thus allowing the enzyme to engage a fresh substrate.


2015 ◽  
Vol 197 (6) ◽  
pp. 1125-1134 ◽  
Author(s):  
Chun-Yang Li ◽  
Xiu-Lan Chen ◽  
Qi-Long Qin ◽  
Peng Wang ◽  
Wei-Xin Zhang ◽  
...  

ABSTRACTPeptide uptake is important for nutrition supply for marine bacteria. It is also an important step in marine nitrogen cycling. However, how marine bacteria absorb peptides is still not fully understood. DppA is the periplasmic dipeptide binding protein of dipeptide permease (Dpp; an important peptide transporter in bacteria) and exclusively controls the substrate specificity of Dpp. Here, the substrate binding specificity of deep-seaPseudoalteromonassp. strain SM9913 DppA (PsDppA) was analyzed for 25 different dipeptides with various properties by using isothermal titration calorimetry measurements.PsDppA showed binding affinities for 8 dipeptides. To explain the multispecific substrate recognition mechanism ofPsDppA, we solved the crystal structures of unligandedPsDppA and ofPsDppA in complex with 4 different types of dipeptides (Ala-Phe, Met-Leu, Gly-Glu, and Val-Thr).PsDppA alternates between an “open” and a “closed” form during substrate binding. Structural analyses of the 4PsDppA-substrate complexes combined with mutational assays indicate thatPsDppA binds to different substrates through a precise mechanism: dipeptides are bound mainly by the interactions between their backbones andPsDppA, in particular by anchoring their N and C termini through ion-pair interactions; hydrophobic interactions are important in binding hydrophobic dipeptides; and Lys457 is necessary for the binding of dipeptides with a C-terminal glutamic acid or glutamine. Additionally, sequence alignment suggests that the substrate recognition mechanism ofPsDppA may be common in Gram-negative bacteria. All together, our results provide structural insights into the multispecific substrate recognition mechanism of marine Gram-negative bacterial DppA, which provides a better understanding of the mechanisms of marine bacterial peptide uptake.IMPORTANCEPeptide uptake plays a significant role in nutrition supply for marine bacteria. It is also an important step in marine nitrogen cycling. However, how marine bacteria recognize and absorb peptides is still unclear. This study analyzed the substrate binding specificity of deep-seaPseudoalteromonassp. strain SM9913 DppA (PsDppA; the dipeptide-binding protein of dipeptide permease) and solved the crystal structures of unligandedPsDppA andPsDppA in complex with 4 different types of dipeptides. The multispecific recognition mechanism ofPsDppA for dipeptides is explained based on structural and mutational analyses. We also find that the substrate-binding mechanism ofPsDppA may be common in Gram-negative bacteria. This study sheds light on marine Gram-negative bacterial peptide uptake and marine nitrogen cycling.


2018 ◽  
Vol 74 (5) ◽  
pp. 383-393 ◽  
Author(s):  
Tanja Küssau ◽  
Marion Flipo ◽  
Niel Van Wyk ◽  
Albertus Viljoen ◽  
Vincent Olieric ◽  
...  

In mycobacteria, the ketoacyl-acyl carrier protein (ACP) reductase MabA (designated FabG in other bacteria) catalyzes the NADPH-dependent reduction of β-ketoacyl-ACP substrates to β-hydroxyacyl-ACP products. This first reductive step in the fatty-acid biosynthesis elongation cycle is essential for bacteria, which makes MabA/FabG an interesting drug target. To date, however, very few molecules targeting FabG have been discovered and MabA remains the only enzyme of the mycobacterial type II fatty-acid synthase that lacks specific inhibitors. Despite the existence of several MabA/FabG crystal structures, the structural rearrangement that occurs upon cofactor binding is still not fully understood. Therefore, unlocking this knowledge gap could help in the design of new inhibitors. Here, high-resolution crystal structures of MabA from Mycobacterium smegmatis in its apo, NADP+-bound and NADPH-bound forms are reported. Comparison of these crystal structures reveals the structural reorganization of the lid region covering the active site of the enzyme. The crystal structure of the apo form revealed numerous residues that trigger steric hindrance to the binding of NADPH and substrate. Upon NADPH binding, these residues are pushed away from the active site, allowing the enzyme to adopt an open conformation. The transition from an NADPH-bound to an NADP+-bound form is likely to facilitate release of the product. These results may be useful for subsequent rational drug design and/or for in silico drug-screening approaches targeting MabA/FabG.


2013 ◽  
Vol 57 (8) ◽  
pp. 3507-3512 ◽  
Author(s):  
Jae-Hee Jeong ◽  
Yi-Seul Kim ◽  
Catleya Rojviriya ◽  
Sung-Chul Ha ◽  
Beom Sik Kang ◽  
...  

ABSTRACTPenicillin-binding proteins (PBPs), which catalyze the biosynthesis of the peptidoglycan chain of the bacterial cell wall, are the major molecular target of bacterial antibiotics. Here, we present the crystal structures of the bifunctional peptidoglycan glycosyltransferase (GT)/transpeptidase (TP) PBP4 fromListeria monocytogenesin the apo-form and covalently linked to two β-lactam antibiotics, ampicillin and carbenicillin. The orientation of the TP domain with respect to the GT domain is distinct from that observed in the previously reported structures of bifunctional PBPs, suggesting interdomain flexibility. In this structure, the active site of the GT domain is occluded by the close apposition of the linker domain, which supports the hypothesis that interdomain flexibility is related to the regulation of GT activity. The acylated structures reveal the mode of action of β-lactam antibiotics toward the class A PBP4 from the human pathogenL. monocytogenes. Ampicillin and carbenicillin can access the active site and be acylated without requiring a structural rearrangement. In addition, the active site of the TP domain in the apo-form is occupied by the tartrate molecule via extensive hydrogen bond interactions with the catalytically important residues; thus, derivatives of the tartrate molecule may be useful in the search for new antibiotics to inhibit PBPs.


2016 ◽  
Vol 30 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Li-Yang Hsu ◽  
Anucha Apisarnthanarak ◽  
Erum Khan ◽  
Nuntra Suwantarat ◽  
Abdul Ghafur ◽  
...  

SUMMARY Carbapenem-resistant Gram-negative bacteria, in particular the Acinetobacter baumannii-calcoaceticus complex and Enterobacteriaceae, are escalating global public health threats. We review the epidemiology and prevalence of these carbapenem-resistant Gram-negative bacteria among countries in South and Southeast Asia, where the rates of resistance are some of the highest in the world. These countries house more than a third of the world's population, and several are also major medical tourism destinations. There are significant data gaps, and the almost universal lack of comprehensive surveillance programs that include molecular epidemiologic testing has made it difficult to understand the origins and extent of the problem in depth. A complex combination of factors such as inappropriate prescription of antibiotics, overstretched health systems, and international travel (including the phenomenon of medical tourism) probably led to the rapid rise and spread of these bacteria in hospitals in South and Southeast Asia. In India, Pakistan, and Vietnam, carbapenem-resistant Enterobacteriaceae have also been found in the environment and community, likely as a consequence of poor environmental hygiene and sanitation. Considerable political will and effort, including from countries outside these regions, are vital in order to reduce the prevalence of such bacteria in South and Southeast Asia and prevent their global spread.


Author(s):  
F. Helfrich ◽  
Axel J. Scheidig

Polyamines influence medically relevant processes in the opportunistic pathogen Pseudomonas aeruginosa, including virulence, biofilm formation and susceptibility to antibiotics. Although homospermidine synthase (HSS) is part of the polyamine metabolism in various strains of P. aeruginosa, neither its role nor its structure has been examined so far. The reaction mechanism of the nicotinamide adenine dinucleotide (NAD+)-dependent bacterial HSS has previously been characterized based on crystal structures of Blastochloris viridis HSS (BvHSS). This study presents the crystal structure of P. aeruginosa HSS (PaHSS) in complex with its substrate putrescine. A high structural similarity between PaHSS and BvHSS with conservation of the catalytically relevant residues is demonstrated, qualifying BvHSS as a model for mechanistic studies of PaHSS. Following this strategy, crystal structures of single-residue variants of BvHSS are presented together with activity assays of PaHSS, BvHSS and BvHSS variants. For efficient homospermidine production, acidic residues are required at the entrance to the binding pocket (`ionic slide') and near the active site (`inner amino site') to attract and bind the substrate putrescine via salt bridges. The tryptophan residue at the active site stabilizes cationic reaction components by cation–π interaction, as inferred from the interaction geometry between putrescine and the indole ring plane. Exchange of this tryptophan for other amino acids suggests a distinct catalytic requirement for an aromatic interaction partner with a highly negative electrostatic potential. These findings substantiate the structural and mechanistic knowledge on bacterial HSS, a potential target for antibiotic design.


Sign in / Sign up

Export Citation Format

Share Document