Abstract 16067: Phosphorylation of Lamin-A/C Modulates Peak Sodium Current in a Patient With Cardiac Conduction Disease

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Michael Olaopa ◽  
Katherine Spoonamore ◽  
Peng-Sheng Chen ◽  
Tomohiko Ai ◽  
Matteo Vatta

Introduction: Deleterious variants in the LMNA gene, which encodes for Lamin-A/C, have been shown to be associated with cardiac conduction diseases (CCDs) and cardiomyopathy. We previously reported that two LMNA variants found in patients presenting with CCDs can prevent the LMNA -mediated activation of peak sodium current (I Na ). In addition, western blot analyses showed phosphorylation of Lamin at serine 22 (S22) was reduced in HEK293 cells expressing either variant. Thus, we sought to investigate what potential role S22 plays on modulating Nav1.5 function. In this study, we focused our analyses on one of the two variants, which is c.1634G>A (p.R545H) in LMNA . We tested the hypothesis that S22 affects peak I Na . Methods and Results: We generated two plasmids that mimic unphosphorylated wild type LMNA ( p.S22A ) and constitutively phosphorylated mutant LMNA ( p.S22D-p.R545H ). We measured and compared peak I Na using patch clamp techniques in HEK293 cells transfected with each LMNA and SCN5A plasmids. Our study showed that p.S22A significantly prevented the LMNA -mediated activation of peak I Na by 63% compared to wild type ( p.S22A : -121 ±11 pA/pF, N =10 vs. wild type LMNA : -340 ±45 pA/pF, N=10, Mann-Whitney U =2, p<0.0005 one-tailed). On the contrary, p.S22D-p.R545H partially restored the reduced peak I Na by 44% ( p.S22D-p.R545H : -137 ±43 pA/pF, N=7 vs. p.R545H : -95 ±15 pA/pF, N=10, Mann-Whitney U =27, p<0.1 one-tailed). Conclusions: Our data indicate the loss of phosphorylation at S22 significantly reduces the LMNA -mediated activation of peak I Na . In the disease state, constitutive phosphorylation partially restores, yet fails to normalize peak I Na . Our observation suggests that S22 could represent a potential therapeutic target in patients with LMNA -mediated CCD. To our knowledge, this is the first study to functionally link phosphorylation of Lamin-A/C at S22 to peak I Na levels and Nav1.5 function.

2007 ◽  
Vol 292 (1) ◽  
pp. H399-H407 ◽  
Author(s):  
Zhu-Shan Zhang ◽  
Joseph Tranquillo ◽  
Valentina Neplioueva ◽  
Nenad Bursac ◽  
Augustus O. Grant

Some mutations of the sodium channel gene NaV1.5 are multifunctional, causing combinations of LQTS, Brugada syndrome and progressive cardiac conduction system disease (PCCD). The combination of Brugada syndrome and PCCD is uncommon, although they both result from a reduction in the sodium current. We hypothesize that slow conduction is sufficient to cause S-T segment elevation and undertook a combined experimental and theoretical study to determine whether conduction slowing alone can produce the Brugada phenotype. Deletion of lysine 1479 in one of two positively charged clusters in the III/IV inter-domain linker causes both syndromes. We have examined the functional effects of this mutation using heterologous expression of the wild-type and mutant sodium channel in HEK-293-EBNA cells. We show that ΔK1479 shifts the potential of half-activation, V1/2m, to more positive potentials ( V1/2m = −36.8 ± 0.8 and −24.5 ± 1.3 mV for the wild-type and ΔK1479 mutant respectively, n = 11, 10). The depolarizing shift increases the extent of depolarization required for activation. The potential of half-inactivation, V1/2h, is also shifted to more positive potentials ( V1/2h = −85 ± 1.1 and −79.4 ± 1.2 mV for wild-type and ΔK1479 mutant respectively), increasing the fraction of channels available for activation. These shifts are quantitatively the same as a mutation that produces PCCD only, G514C. We incorporated experimentally derived parameters into a model of the cardiac action potential and its propagation in a one dimensional cable (simulating endo-, mid-myocardial and epicardial regions). The simulations show that action potential and ECG changes consistent with Brugada syndrome may result from conduction slowing alone; marked repolarization heterogeneity is not required. The findings also suggest how Brugada syndrome and PCCD which both result from loss of sodium channel function are sometimes present alone and at other times in combination.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
C Pham ◽  
N Munoz-Martin ◽  
S Podliesna ◽  
A Milano ◽  
L Beekman ◽  
...  

Abstract Background In the past decade, we and others have reported three families with rare genetic variants in TNNI3K, encoding the cardiac-specific troponin-I interacting kinase (TNNI3K), co-segregating with a mixed, but highly penetrant, cardiac phenotype that features predominant atrial/junctional tachycardia occurring in combination with cardiac conduction disease and dilated cardiomyopathy. We demonstrated that while the p.Thr539Ala and p.Gly526Asp TNNI3K variants had decreased auto-phosphorylation activity the p.Glu768Lys variant, present in 3 independent families, leads to increased auto-phosphorylation levels, in line with the finding that increased levels of Tnni3k expression are associated with slower atrial-ventricular conduction in mice. Objective Identifying new genetic variants in the TNNI3K gene associated with cardiac disease and assessing their impact on TNNI3K auto-phosphorylation levels. Methods Through next generation sequencing of a panel of genes associated with cardiac disease we assessed TNNI3K in patients with cardiac arrhythmias and cardiomyopathies. All variants identified were assessed in vitro for effects on auto-phosphorylation. Briefly, wild-type and mutant TNNI3K constructs were transfected into HEK293 cells, protein was extracted after 48 hours and analyzed with anti-flag and anti-phospho-tyrosine antibodies on Western blot. Results We identified 7 novel and rare variants in TNNI3K in 11 additional probands, with predominantly cardiac conduction disease, with or without dilated cardiomyopathy, and atrial-ventricular-re-entry-tachycardia (AVNRT). Of these, multiple variants were found to have aberrant auto-phosphorylation including almost absent auto-phosphorylation capacity for one (TNNI3K-p.Val510Leu). All three-independent wild type TNNI3K transfected HEK293 cell lysates showed similar phosphorylated TNNI3K levels and the kinase-dead negative control demonstrated no phosphorylation activity. Conclusion We here present 7 novel genetic variants in TNNI3K in patients with a remarkable overlap in cardiac phenotype consisting mainly of AVNRT and cardiac conduction disease. We further show that some of these variants alter the auto-phosphorylation of TNNI3K. These results indicate a more prevalent role of variants in TNNI3K in human cardiac disease and a possible in vitro functional assay to assess the pathogenicity of such variants. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): The Dutch Research Council (NWO Talent Scheme VIDI-91718361)


2022 ◽  
pp. ASN.2021030392
Author(s):  
Wouter van Megen ◽  
Megan Beggs ◽  
Sung-Wan An ◽  
Patrícia Ferreira ◽  
Justin Lee ◽  
...  

Background Treatment with the aminoglycoside antibiotic gentamicin can be associated with severe adverse effects, including renal calcium wasting. The underlying mechanism is unknown but it has been proposed to involve activation of the Ca2+-sensing receptor (CaSR) in the thick ascending limb, which would increase expression of claudin-14 (CLDN14) and limit Ca2+ reabsorption. However, no direct evidence for this hypothesis has been presented. Methods We studied the effect of gentamicin in vivo using mouse models with impaired Ca2+ reabsorption in the proximal tubule and the thick ascending limb. We used a Cldn14 promoter luciferase-reporter assay to study CaSR activation and investigated the effect of gentamicin on activity of the distal nephron Ca2+ channel transient potential receptor vanilloid 5 (TPRV5), as determined by patch-clamp in HEK293 cells. Results Gentamicin increased urinary Ca2+ excretion in wild-type mice following acute and chronic administration. This calciuretic effect was unaltered in mice with genetic CaSR overactivation and was present in furosemide-treated animals, whereas the calciuretic effect in Cldn14-/-mice and mice with impaired proximal tubular Ca2+ reabsorption (claudin-2 [CLDN2]-deficient Cldn2-/- mice) was equivalent to that of wild-type mice. In vitro, gentamicin failed to activate the CaSR. In contrast, patch-clamp analysis revealed that gentamicin strongly inhibited rabbit and human TRPV5 activity and that chronic gentamicin administration downregulated distal nephron Ca2+ transporters. Conclusions Gentamicin does not cause hypercalciuria via activation of the CaSR-CLDN14 pathway or by interfering with proximal tubular CLDN2-dependent Ca2+ reabsorption. Instead, gentamicin blocks distal Ca2+ reabsorption by direct inhibition of the Ca2+ channel TRPV5. These findings offer new insights into calcium wasting in patients treated with gentamicin.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Michael A. Olaopa ◽  
Katherine G. Spoonamore ◽  
Deepak Bhakta ◽  
Zhenhui Chen ◽  
Patricia B.S. Celestino-Soper ◽  
...  

Variants in the LMNA gene, which encodes Lamin-A/C, have been commonly associated with cardiac conduction system diseases usually accompanying cardiomyopathy. We have seen two unrelated patients who presented with atrioventricular block (AVB) with or without cardiomyopathy. Genetic testing identified the LMNA missense variant c.1634G>A (p.R545H) and the single nucleotide deletion c.859delG (p.A287Lfs*193). The deletion leads to a shift in the reading frame and subsequent protein truncation. Since impaired Nav1.5 function has been reported to cause AVB, we sought to investigate the effects of abnormal Lamins on Nav1.5 in HEK-293 cells using patch-clamp methods. Patch-clamp studies showed that p.R545H decreased the peak INa by approximately 70%. The voltage-dependency of steady state inactivation was rightward shifted in the cells transfected with p.R545H. The p.A287Lfs*193 also decreased the peak INa by approximately 62%. The voltagedependency of steady state inactivation was rightward shifted in the cells transfected with p.A287Lfs*193. Variants of the LMNA gene caused significant reduction of the peak INa in HEK-293 cells, which may account for the patients’ AVB.


2017 ◽  
Vol 32 (8) ◽  
pp. 704-711 ◽  
Author(s):  
Inn-Chi Lee ◽  
Jiann-Jou Yang ◽  
Jao-Shwann Liang ◽  
Tung-Ming Chang ◽  
Shuan-Yow Li

We analyzed the KCNQ2 wild-type gene and 3 mutations to highlight the important association between the KCNQ2 phenotype and genotype. The clinical phenotypes of 3 mutations (p.E515D, p.V543 M, and p.R213Q) were compared. KCNQ2, wild-type, and mutant KCNQ2 alleles were transfected into HEK293 cells before whole-cell patch-clamp analysis. Neurodevelopmental outcomes were worst in patients with the p.R213Q mutation, better in patients with the p.E515D mutation, and best in patients with the novel p.V543 M mutation. The currents in p.E515D and in p.V543 M were significantly lower than in the wild type in homomeric and heteromeric transfected HEK293 cells ( P < .05). The opening threshold shifted to values that were more positive, and the maximal current induced by strong depolarization was higher in cells with the p.E515D and p.R213Q mutations. We provide evidence that genotype is involved in determining clinical phenotype, including the seizure frequency and outcome.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3863-3863 ◽  
Author(s):  
Mika Kontro ◽  
Heikki Kuusanmäki ◽  
Samuli Eldfors ◽  
Tea Pemovska ◽  
Hanna L M Rajala ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is caused by the cooperation of multiple oncogenic lesions. Recent evidence supports that IL-7 and its receptor IL-7R contribute to T-ALL development (Zenatti et al, 2011). The two main pathways induced by IL-7R are JAK/STAT5 and PI3K/Akt/mTOR. Activating mutations to IL7R, JAK1, JAK2 or JAK3 are estimated to occur in 20-30% of all T-ALL patients (Cools 2013). STAT5 plays an important role in many hematologic malignancies but constitutive STAT5 activation often is a secondary event. Mutations in STAT5B (N642H) were recently described in LGL-leukemia in patients with an unusually aggressive and fatal form of the disease (Rajala et al, 2013). In other cancers, including ALL, patients with mutations in STAT5B have not been described. Here we report novel activating STAT5B mutations as drivers of T-ALL. Methods We performed exome sequencing of bone marrow (BM) samples from an 18-year-old female with relapsed T-ALL. Targeted next-generation amplicon sequencing and Sanger sequencing was used to analyze the region encoding the STAT5B SRC homology 2 (SH2) domain including the N642, T648 and I704 codons in a cohort of 17 adult and pediatric T-ALL patients treated at HUCH 2008-2013. For functional studies STAT5B expression vectors with the N642H, T648S or I704L mutation and an expression vector with both N642H and T648S mutations were used to transiently transfect HEK293 cells. To investigate the effect on transcriptional activity we co-transfected the mutant constructs with a STAT5 luciferase reporter plasmid and used Western blot analysis to study the phosphorylation status of the generated constructs. For drug sensitivity of STAT5B mutated cells we performed ex vivo drug testing on primary blasts from the index patient using a comprehensive set of 202 oncology drugs (approved and in clinical development). Each drug was tested over a 10,000-fold concentration range. Results Sequencing of the index patient revealed 3 different somatic missense mutations in STAT5B (T648S, N642H, I704L) and mutations in KRAS, WT1 and SUZ12. No mutations affecting the JAK genes or IL7R were detected. All STAT5B mutations were located in the SH2 domain, which mediates dimerization and activation by trans-phosphotyrosine binding. The same three STAT5B mutations were also found in the diagnostic sample and most likely represent founding events in leukemogenesis. The N642H and T648S mutations occurred on the same allele with tumor mutation frequencies of approximately 40% while the I704L mutation occurred on a different allele with a similar tumor mutation frequency. To investigate the prevalence of STAT5B mutations in T-ALL we sequenced 17 BM samples from T-ALL patients. In this cohort we could not detect any other patients carrying mutations in the STAT5B SH2 domain. Western blot analysis made with mutant constructs showed that the N642H and I704L mutations induced constitutive phosphorylation of STAT5B. Compared to wild type STAT5B the N642H and I704L mutants induced 47- and 6-fold increases in transcriptional activity, respectively, while T648S mutation had no effect in the assays. The construct with both the N642H and T648S mutations showed the highest amount of constitutive phosphorylation and induced a 56-fold increase in transcriptional activity compared to wild type STAT5B. Using ex vivo drug testing the STAT5B mutated blasts were resistant (EC50≥1 uM) to inhibitors of PI3K (e.g. idelalisib, XL147), dual inhibitors of PI3K/mTOR (PF-04691502, dactolisib) and mTOR inhibitors (temsirolimus, everolimus). Furthermore the blasts showed no response to AKT1 inhibitors (MK-2220) or JAK inhibitors (ruxolitinb, tofacitinib). In contrast, the cells were most sensitive to the BCL-2/BCL-XL inhibitor navitoclax (EC50 83 nM). Summary STAT5B mutations are uncommon in T-ALL but their occurrence underlines the significance of the IL7R-JAK-STAT5 pathway in the pathogenesis of T-ALL. While STAT5B mutant blasts were not sensitive to inhibitors targeting JAK kinases, the cells were unusually sensitive to inhibitors of target molecules of STAT5B, including anti-apoptotic BCL-2 proteins. These results suggest that BCL-2/BCL-XL inhibitors such as navitoclax are novel candidate therapies for T-ALL patients. Disclosures: Mustjoki: Novartis: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau. Porkka:BMS: Consultancy, Research Funding, Speakers Bureau; Novartis: Consultancy, Research Funding, Speakers Bureau.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 245 ◽  
Author(s):  
Morgan Chevalier ◽  
Bogdan Amuzescu ◽  
Vaibhavkumar Gawali ◽  
Hannes Todt ◽  
Thomas Knott ◽  
...  

The cardiac late Na+ current is generated by a small fraction of voltage-dependent Na+ channels that undergo a conformational change to a burst-gating mode, with repeated openings and closures during the action potential (AP) plateau. Its magnitude can be augmented by inactivation-defective mutations, myocardial ischemia, or prolonged exposure to chemical compounds leading to drug-induced (di)-long QT syndrome, and results in an increased susceptibility to cardiac arrhythmias. Using CytoPatch™ 2 automated patch-clamp equipment, we performed whole-cell recordings in HEK293 cells stably expressing human Nav1.5, and measured the late Na+ component as average current over the last 100 ms of 300 ms depolarizing pulses to -10 mV from a holding potential of -100 mV, with a repetition frequency of 0.33 Hz. Averaged values in different steady-state experimental conditions were further corrected by the subtraction of current average during the application of tetrodotoxin (TTX) 30 μM. We show that ranolazine at 10 and 30 μM in 3 min applications reduced the late Na+ current to 75.0 ± 2.7% (mean ± SEM, n = 17) and 58.4 ± 3.5% (n = 18) of initial levels, respectively, while a 5 min application of veratridine 1 μM resulted in a reversible current increase to 269.1 ± 16.1% (n = 28) of initial values. Using fluctuation analysis, we observed that ranolazine 30 μM decreased mean open probability p from 0.6 to 0.38 without modifying the number of active channels n, while veratridine 1 μM increased n 2.5-fold without changing p. In human iPSC-derived cardiomyocytes, veratridine 1 μM reversibly increased APD90 2.12 ± 0.41-fold (mean ± SEM, n = 6). This effect is attributable to inactivation removal in Nav1.5 channels, since significant inhibitory effects on hERG current were detected at higher concentrations in hERG-expressing HEK293 cells, with a 28.9 ± 6.0% inhibition (mean ± SD, n = 10) with 50 μM veratridine.      


2019 ◽  
Author(s):  
Jean-Sébastien Rougier ◽  
Maria C. Essers ◽  
Ludovic Gillet ◽  
Sabrina Guichard ◽  
Stephan Sonntag ◽  
...  

AbstractBackgroundIn cardiac ventricular muscle cells, the presence of voltage-gated sodium channels Nav1.5 at the lateral membrane depends in part on the interaction between the dystrophin-syntrophin complex and the Nav1.5 C-terminal PDZ-domain-binding sequence Ser-Ile-Val (SIV motif). α1-Syntrophin, a PDZ-domain adaptor protein, mediates the interaction between Nav1.5 and dystrophin at the lateral membrane of cardiac cells. Using the cell-attached patch-clamp approach on cardiomyocytes expressing Nav1.5 in which the SIV motif is deleted (ΔSIV), sodium current (INa) recordings from the lateral membrane revealed an SIV-motif-independent INa. Since immunostainings have suggested that Nav1.5 is expressed in transverse (T-) tubules, this remaining INa might be conducted by channels in the T-tubules. Of note, a recent study using heterologous expression systems showed that α1-syntrophin also interacts with the Nav1.5 N-terminus, which may explain the SIV-motif independent INa at the lateral membrane of cardiomyocytes.AimTo address the role of α1-syntrophin in regulating the INa at the lateral membrane of cardiac cells.Methods and resultsPatch-clamp experiments in cell-attached configuration were performed on the lateral membranes of wild-type, α1-syntrophin knock-down, and ΔSIV ventricular mouse cardiomyocytes. Compared to wild-type, a reduction of the lateral INa was observed in myocytes from α1-syntrophin knockdown hearts. However, similar to ΔSIV myocytes, a remaining INa was still recorded. In addition, cell-attached INa recordings from lateral membrane did not differ significantly between non-detubulated and detubulated ΔSIV cardiomyocytes. Lastly, we obtained evidence suggesting that cell-attached patch-clamp experiments on the lateral membrane cannot record currents conducted by channels in T-tubules such as calcium channels.ConclusionAltogether, these results suggest the presence of a sub-pool of sodium channels at the lateral membrane of cardiomyocytes that is independent of α1-syntrophin and the PDZ-binding motif of Na 1.5, located in membrane domains outside of T-tubules. The question of a T-tubular pool of Nav1.5 channels however remains open.


2001 ◽  
Vol 120 (5) ◽  
pp. A564-A565
Author(s):  
L SCHWAKE ◽  
A HENKEL ◽  
H RIEDEL ◽  
B HADASCHIK ◽  
T SCHLENKER ◽  
...  
Keyword(s):  

Oncogene ◽  
2021 ◽  
Author(s):  
Shuang Qiao ◽  
Wenhua Lu ◽  
Christophe Glorieux ◽  
Jiangjiang Li ◽  
Peiting Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document