scholarly journals Plant-Derived Products for Treatment of Vascular Intima Hyperplasia Selectively Inhibit Vascular Smooth Muscle Cell Functions

2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Kang Xu ◽  
Mohanad Kh Al-ani ◽  
Xin Pan ◽  
Qingjia Chi ◽  
Nianguo Dong ◽  
...  

Natural products are used widely for preventing intimal hyperplasia (IH), a common cardiovascular disease. Four different cells initiate and progress IH, namely, vascular smooth muscle, adventitial and endothelial cells, and circulation or bone marrow-derived cells. Vascular smooth muscle cells (VSMCs) play a critical role in initiation and development of intimal thickening and formation of neointimal hyperplasia. In this review, we describe the different originating cells involved in vascular IH and emphasize the effect of different natural products on inhibiting abnormal cellular functions, such as VSMC proliferation and migration. We further present a classification for the different natural products like phenols, flavonoids, terpenes, and alkaloids that suppress VSMC growth. Abnormal VSMC physiology involves disturbance in MAPKs, PI3K/AKT, JAK-STAT, FAK, and NF-κB signal pathways. Most of the natural isolate studies have revealed G1/S phase of cell cycle arrest, decreased ROS production, induced cell apoptosis, restrained migration, and downregulated collagen deposition. It is necessary to screen optimal drugs from natural sources that preferentially inhibit VSMC rather than vascular endothelial cell growth to prevent early IH, restenosis following graft implantation, and atherosclerotic diseases.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
xiangqin he ◽  
Kunzhe Dong ◽  
Jian Shen ◽  
Islam Osman ◽  
Guoqing Hu ◽  
...  

Introduction: Restenosis after percutaneous intervention is predominantly attributed to proliferation and migration of vascular smooth muscle cells (VSMCs). However, the key regulators responsible for VSMC proliferation and migration remain to be identified. Hypothesis: We previously reported that the novel high mobility group (HMG) nuclear protein HMGXB4 (HMG-Box containing 4) plays a critical role in the de-differentiation of vascular smooth muscle cells in vitro and in acute inflammatory response to septic shock. We hypothesize that HMGXB4 is critical for neointimal hyperplasia in response to inflammatory stimuli. Methods and Results: We found that the expression of HMGXB4 is dramatically induced in ligation or wire injury-induced neointimal hyperplasia and correlated with the activation of inflammatory signaling in mice. Using an inducible smooth muscle-specific Hmgxb4 KO (knockout) mice model, we found specific KO of Hmgxb4 in VSMCs ameliorates ligation- or wire- injury induced neointimal formation. Among an array of growth factors and inflammation cytokines, we found that TNFα and INFγ effectively induces the expression of HMGXB4 in VSMCs and correlates with the VSMC proliferation in vitro. Furthermore, we found deletion of HMGXB4 attenuates while over-expression of HMGXB4 promotes inflammation cytokines-induced VSMC proliferation in vitro. These results suggest injury-induced inflammatory signal triggers HMGXB4 induction, which, in turn, promotes the VSMC proliferation and neointimal formation. Conclusions: Our study not only demonstrates a critical role of HMGXB4 in promoting neointimal hyperplasia in response the arterial injury, but also suggests HMGXB4 is a potential novel target for the management of restenosis in human.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zaixiong Ji ◽  
Jiaqi Li ◽  
Jianbo Wang

The uncontrolled proliferation and migration of vascular smooth muscle cells is a critical step in the pathological process of restenosis caused by vascular intimal hyperplasia. Jujuboside B (JB) is one of the main biologically active ingredients extracted from the seeds of Zizyphus jujuba (SZJ), which has the properties of anti-platelet aggregation and reducing vascular tension. However, its effects on restenosis after vascular intervention caused by VSMCs proliferation and migration remain still unknown. Herein, we present novel data showing that JB treatment could significantly reduce the neointimal hyperplasia of balloon-damaged blood vessels in Sprague-Dawley (SD) rats. In cultured VSMCs, JB pretreatment significantly reduced cell dedifferentiation, proliferation, and migration induced by platelet-derived growth factor-BB (PDGF-BB). JB attenuated autophagy and reactive oxygen species (ROS) production stimulated by PDGF-BB. Besides, JB promoted the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ). Notably, inhibition of AMPK and PPAR-γ partially reversed the ability of JB to resist the proliferation and migration of VSMCs. Taken as a whole, our findings reveal for the first time the anti-restenosis properties of JB in vivo and in vitro after the endovascular intervention. JB antagonizes PDGF-BB-induced phenotypic switch, proliferation, and migration of vascular smooth muscle cells partly through AMPK/PPAR-γ pathway. These results indicate that JB might be a promising clinical candidate drug against in-stent restenosis, which provides a reference for further research on the prevention and treatment of vascular-related diseases.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Yuming Li ◽  
Haitao Li ◽  
Xinfang Wang ◽  
Junya Wang ◽  
Zhongqiu Li

The current study was designed to explore the mechanisms of vascular smooth muscle cell (VSMC) proliferation and migration induced by adenosine diphosphate ribosyl cyclase(ADPRC). In this study, 32 Male ApoE-/- mice(6 weeks old, 18-22g)on a C57BL/6J background were divided into four groups, which received normal chow (n=8, NC group), high-fat Western-type diet (n=8, 0.25% cholesterol, 21% fat,HFD group), high-fat Western-type diet,infusion of 2,2′-dihydroxyazobenzene(DHAB, a ADPRC inhibitor, 2mg/kg/day, n=8, HFD-DHAB group) intraperitoneally or high-fat Western-type diet,infusion of LY294002(a Inhibitor of Akt, 5mg/kg/d, n=8, HFD-LY group) intraperitoneally, for 10 weeks. 8 male C57BL/6J mice served as control. After 10 weeks, mice were anesthetized with chloral hydrate, aorta was removed and immediately frozen in liquid nitrogen. Aortic atherosclerotic lesions, VSMC proliferation and migration were assessed by histomorphological observation, smooth muscle actin-α(α-SMA)and proliferating cell nuclear antigen (PCNA) examination. ADPRC expression and alterations of Akt, FOXO3a, phospho-FOXO3a and MMP-9 were determined by RT-PCR, Western Blot, Immunohistochemistry or Immunofluorescence. The results showed that, in aortic atherosclerotic lesions derived from atherosclerotic mice of HFD group, an increased VSMC proliferation and migration, reflected by the up-regulation of α-SMA and PCNA expression, were observed followed by increased expression of ADPRC, Akt, FOXO3a, phospho-FOXO3a and MMP-9. The enhanced expression of ADPRC and followed alterations of FOXO3a, phospho-FOXO3a, MMP-9 as well as α-SMA, PCNA, VSMC proliferation and migration were absent in NC group and C57BL/6J control mice. Treatment with DHAB or LY294002 reversed VSMC proliferation, migration and expression of Akt, FOXO3a, phospho-FOXO3a and MMP-9 in HFD-DHAB and HFD-LY group. These data shows that high-fat Western-type diet induced ADPRC may via PI3K-Akt to phosphorylate FOXO3a up-regulating MMP-9 to enhance vascular smooth muscle cell proliferation and migration in mice.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Hong-Bing Wu ◽  
Zhi-Wei Wang ◽  
Feng Shi ◽  
Zong-Li Ren ◽  
Luo-Cheng Li ◽  
...  

Objectives. To observe the effect of avβ3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism. Background. Percutaneous transluminal coronary angioplasty (PTCA) is currently the preferred method for the treatment of coronary heart disease. However, vascular restenosis still occurs after PTCA treatment, severely affecting the clinical efficacy of PTCA. Integrin avβ3, which is widely expressed on various cell surfaces, plays an important role in the proliferation and migration of VSMCs. Methods. In this experiment, we used systematic evolution of ligands by exponential enrichment (SELEX) to screen out avβ3 ssDNA, which has high affinity and specificity to the avβ3 protein. MTT, Transwell, and cell scratch assays were carried out to examine the effect of avβ3 ssDNA on the proliferation and migration of VSMCs. Flow cytometry was performed to detect apoptosis and cell cycle progression. The effect of avβ3 ssDNA on the Ras-phosphatidylinositol-4,5-bisphosphate 3-kinase/mitogen-activated protein kinase (PI3K/MAPK) signaling pathway was evaluated by quantitative reverse transcription polymerase chain reaction and western blot. Results. In the present study, we found that avβ3 ssDNA significantly decreased the expression of osteopontin, focal adhesion kinase, Ras, p-PI3K, and p-MAPK at both mRNA and protein levels (P<0.05). Avβ3 ssDNA also inhibited VSMC proliferation and migration while promoting apoptosis (P<0.05), as demonstrated by the upregulation of the proapoptotic proteins Bax and active caspase 3 (P<0.05). Conclusions. The findings suggest that avβ3 ssDNA inhibited the proliferation and migration of VSMCs by suppressing the activation of Ras-PI3K/MAPK signaling.


Author(s):  
Mei Li ◽  
Hongmei Zhu ◽  
Xiaoyan Hu ◽  
Fuhua Gao ◽  
Xinxin Hu ◽  
...  

Transmembrane protein 98 (TMEM98) is a novel gene. In a prior study, we have shown that siRNA-mediated knockdown of TMEM98 inhibited interleukin (IL)-8-promoted endothelial cell (EC) adhesion as well as vascular smooth muscle cell (VSMC) proliferation and migration in the vascular endothelial and smooth muscle cells dysfunction. Herein, we used gain- and loss-of-function approaches combined with biochemical techniques to further explore the role of TMEM98 in the vascular wall cell. The expression and secretion of TMEM98 was increased in cultured human umbilical vein endothelial cells (HUVECs) and VSMCs treated with IL-8 and platelet-derived growth factor (PDGF)-BB. Also, PDGF-BB secretion was increased in TMEM98-treated HUVECs and VSMCs. Thus, it appears that TMEM98 and PDGF-BB form a positive feedback loop in potentiation of EC adhesion as well as VSMC proliferation and migration. Knockdown of TMEM98 mediated by siRNA inhibited PDGF-BB-promoted EC adhesion by downregulating the expression of ICAM-1 and VCAM-1 as well as impaired the proliferation and migration of VSMCs through suppressing the AKT/GSK3β/cyclin D1 signaling pathway and reducing the expression of β-catenin. Hence, TMEM98 promoted EC adhesion through inducing the expression of ICAM-1/VCAM-1 and triggered VSMC proliferation and migration through activating the ERK and AKT/GSK3β signaling pathways. Taken together, TMEM98 may serve as a potential therapeutic target for the clinical treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qi Wu ◽  
Yuanyang Chen ◽  
Zhiwei Wang ◽  
Xin Cai ◽  
Yanjia Che ◽  
...  

Mangiferin is a naturally occurring xanthone C-glycoside that is widely found in various plants. Previous studies have reported that mangiferin inhibits tumor cell proliferation and migration. Excessive proliferation and migration of vascular smooth muscle cells (SMCs) is associated with neointimal hyperplasia in coronary arteries. However, the role and mechanism of mangiferin action in neointimal hyperplasia is still unknown. In this study, a mouse carotid artery ligation model was established, and primary rat smooth muscle cells were isolated and used for mechanistic assays. We found that mangiferin alleviated neointimal hyperplasia, inhibited proliferation and migration of SMCs, and promoted platelets derive growth factors-BB- (PDGF-BB-) induced contractile phenotype in SMCs. Moreover, mangiferin attenuated neointimal formation by inhibiting mitochondrial fission through the AMPK/Drp1 signaling pathway. These findings suggest that mangiferin has the potential to maintain vascular homeostasis and inhibit neointimal hyperplasia.


VASA ◽  
2013 ◽  
Vol 42 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Mario Chiong ◽  
Pablo E. Morales ◽  
Gloria Torres ◽  
Tomás Gutiérrez ◽  
Lorena García ◽  
...  

Differentiation of vascular smooth muscle cells (VSMC) is an essential process of vascular development. VSMC have biosynthetic, proliferative, and contractile roles in the vessel wall. Alterations in the differentiated state of the VSMC play a critical role in the pathogenesis of atherosclerosis and intimal hyperplasia, as well as in a variety of other human diseases, including hypertension, asthma, atherosclerosis and vascular aneurysm. This review provides an overview of the current state of knowledge of molecular mechanisms involved in controlling VSMC proliferation, with particular focus on glucose metabolism and its relationship with mitochondrial bioenergetics. Increased levels of glucose transporter 1 (GLUT1) are observed in VSMC after endothelial injury, suggesting a relationship between glucose uptake and VSMC proliferation. Mitochondrial dysfunction is a common feature in VSMC during atherosclerosis. Alterations in mitochondrial function can be produced by dysregulation of mitofusin-2, a small GTPase associated with mitochondrial fusion. Moreover, exacerbated proliferation was observed in VSMC from pulmonary arteries with hyperpolarized mitochondria and enhanced glycolysis/glucose oxidation ratio. Several lines of evidence highlight the relevance of glucose metabolism in the control of VSMC proliferation, indicating a new area to be explored in the control of vascular pathogenesis.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Pan Li ◽  
Bing Yi ◽  
Qing Qin ◽  
Ming Chen ◽  
Xiaohua You ◽  
...  

Background Abnormal phenotypic switch of vascular smooth muscle cell (VSMC) is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. Recently, microRNAs (miRNAs) emerge as critical regulators for vascular smooth muscle cell (VSMC) function. Our initial study identified miR-663 as one of the most sharply downregulated miRNAs in human proliferative aortic smooth muscle cells. Hypothesis MiR-663 is implicated in human VSMC phenotypic switch and the development of neointima formation. Methods and Results By using quantitative real-time PCR (qRT-PCR), we found that microRNA-663 (miR-663) was significantly downregulated in cultured human aortic VSMCs upon platelet-derived growth factor (PDGF) treatment, whereas its expression was markedly increased during VSMC differentiation as induced by either retinoid acid or SMC differentiation medium, a condition which induces SMC differentiation and inhibits cell proliferation. Furthermore, we demonstrated that overexpression of miR-663 significantly increased the expression of VSMC differentiation marker genes, such as SM22α, SM α-action, calponin, and SM myosin heavy chain, suggesting that miR-663 is a novel modulator implicated in human VSMC phenotypic switch. Moreover, miR-663 potently inhibited PDGF induced VSMC proliferation and migration. Mechanistically, we identified JunB as a downstream target of miR-663 in human VSMCs. Indeed, overexpression of miR-663 markedly inhibited the expression of the transcription factor JunB as well as its downstream molecules including matrix metallopeptidase-9 (MMP-9) and myosin light chain-9 (Myl9), thus inhibiting VSMC proliferation and migration. Finally, we showed that adeno-miR-663 markedly suppressed the neointimal lesion formation by approximately 50% in mice after vascular injury induced by carotid artery ligation, specifically via decreased JunB expression. Conclusion These results indicate that miR-663 is a novel modulator implicated in human VSMC phenotypic switch through targeting JunB expression and suggest that specific modulation of miR-663 in human VSMCs may represent a novel and attractive approach for the treatment of vascular proliferative diseases.


Sign in / Sign up

Export Citation Format

Share Document