Abstract 17069: NAD+Redox Imbalance in the Heart Exacerbates Diabetic Cardiomyopathy

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Akash Deep D Chakraborty ◽  
Ying Ann Chiao ◽  
Christine M Light ◽  
Rong Tian ◽  
Junichi Sadoshima ◽  
...  

Diabetes is a risk factor of heart failure and leads to cardiac dysfunction, a condition named diabetic cardiomyopathy (DCM). NAD redox imbalance is observed in diabetic tissues. However, whether NAD redox imbalance promotes cardiac dysfunction in DCM remains unknown. The objective of this study is to determine the causal role of NAD redox imbalance in DCM.Type 1 diabetes was induced in C57BL6 mice by streptozotocin (STZ) injections, and DCM was allowed to develop for 16 weeks. Diabetes-induced chronic stress led to systolic and diastolic cardiac dysfunction along with a lowered NAD/NADH ratio. The diabetogenic protocol was applied to control and cardiac-specific Ndufs4-KO mice (cKO), a mouse model with lowered cardiac NAD/NADH without baseline cardiac dysfunction. Analyses of blood glucose and >200 metabolites in plasma showed no significant change in diabetic control and diabetic cKO mice, suggesting that their hearts experienced similar diabetic stress. Diabetic cKO hearts showed lowered NAD/NADH, aggravated contractile and relaxation dysfunction compared to the diabetic control hearts in both sexes. The data suggest that NAD redox imbalance exacerbated DCM. Collagen staining and transcript analyses of fibrosis-related genes showed no change in diabetic cKO hearts, signifying that the exacerbated dysfunction was due to cardiomyocyte dysfunction. A global protein acetylation was promoted in the diabetic cKO hearts with an increase in SOD2 acetylation levels at lysine-68 (SOD2-K68Ac) and enhanced protein oxidation. Diabetic cKO mice displayed enhanced levels of TnI S150 phosphorylation (TnI-S150Pi), but not phosphorylation of TnI-S23/24 or MyBPc-S282. These data suggest that enhanced oxidative stress and altered myofilament Ca 2+ sensitivity via TnI-S150Pi are responsible for the NAD redox imbalance-exacerbated DCM.To confirm the role of NAD redox imbalance in DCM, we elevated cardiac NAD levels in diabetic cKO mice by cardiac-specific expression of NAMPT. Expression of NAMPT in the heart improved cardiac systolic and diastolic function in diabetic cKO hearts. This was due to increased NAD/NADH ratio and reversed pathogenic mechanisms (lowered SOD2-K68Ac and TnI-S150Pi). This study supports the causal role of NAD redox imbalance in DCM.

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Chi Fung Lee

Diabetes and heart failure are linked to NAD redox imbalance, whose role in diabetic cardiomyopathy has not been directly tested. Streptozotocin-induced diabetes in WT mice for 16 weeks promoted declines in systolic and diastolic function, which associated with lowered cardiac NAD/NADH ratio (NAD redox imbalance). To test the hypothesis that , we employed mouse models with cardiac-specific manipulations of NAD redox states. Cardiac-specific Ndufs4-KO mice (cKO) exhibit lowered cardiac NAD/NADH ratio with normal baseline function, geometry and energetics. Control and cKO mice were challenged with 8-week diabetic stress. Metabolomic analyses of plasma collected after the diabetic stress showed similar hyperglycemia and dyslipidemia stresses in diabetic control and diabetic cKO mice. Chronic diabetic stress promoted systolic and diastolic dysfunctions in control mice, which were further exacerbated in diabetic cKO mice in both male and female cohorts. Collagen levels and transcript analyses of fibrosis and extracellular matrix-dependent pathways showed no change in diabetic cKO hearts, suggesting that cardiomyocyte dysfunction is a likely culprit for the exacerbated dysfunction. Increased protein acetylation, including SOD2-K68Ac, was observed in diabetic cKO hearts. Inhibited antioxidant function by SOD2-K68Ac promoted protein oxidation in diabetic cKO hearts, suggesting oxidative stress as a pathogenic mechanism. We next examined phosphorylation status of myofilament proteins in these diabetic hearts. MyBPC-S282Pi levels are suppressed in failing hearts and remained unchanged in diabetic cKO hearts. TnI-S150Pi increases myofilament calcium sensitivity and prolongs calcium dissociation, while TnI-S23/24Pi imposes the opposite effects. TnI-S150Pi levels were elevated in diabetic cKO hearts, while TnI-S23/24Pi levels unchanged. Therefore, exacerbated diastolic dysfunction in diabetic cKO hearts is due to the selective phosphorylation at TnI-S150. AMPK is activated by energetic stress and phosphorylates TnI-S150. ATP levels decreased, and AMP/ATP ratio increased in diabetic cKO hearts, implicating impaired energetics to promote TnI-S150Pi and dysfunction. Elevation of NAD levels normalized cardiac NAD redox balance in diabetic cKO hearts. Elevated levels of SOD2-K68Ac and TnI-S150Pi, exacerbated systolic and diastolic dysfunction in diabetic cKO hearts were all reversed by elevation of NAD levels. Dysfunction in diabetic control hearts was also ameliorated by elevation of NAD levels. These data collectively conclude that NAD redox imbalance is a positive mediator of the progression of diabetic cardiomyopathy.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Ying Ann Chiao ◽  
Christine Light ◽  
Xiaojian Shi ◽  
Rong Tian ◽  
Junichi Sadoshima ◽  
...  

Diabetes is long linked to lowered NAD/NADH ratio, aka NAD redox imbalance, but its causal role to diabetic cardiomyopathy is not established. We used mouse models with latent decrease in cardiac NAD/NADH ratio (cardiac-specific Ndufs4-KO, cKO) and elevated cardiac NAD levels to directly test whether cardiac NAD redox imbalance accelerates diabetic cardiomyopathy. Control and cKO mice were subjected to 8-week T1D stress, and longitudinal cardiac function was measured by echocardiography. Accelerated declines in systolic and diastolic function were observed in T1D cKO mice. Insulin depletion and hyperglycemia were similar in T1D control and T1D cKO mice, and serum metabolomic analyses showed unchanged aqueous and lipid metabolite levels. These metabolite results suggested that T1D control and cKO hearts were stressed under similar diabetic conditions. Importantly, elevation of cardiac NAD levels to attenuate NAD redox imbalance mitigated the accelerated functional declines in T1D cKO hearts. The data from mouse models with manipulated NAD redox states suggested that NAD redox imbalance accelerates diabetic cardiomyopathy. Cardiac fibrosis levels were not different in T1D control and cKO hearts, while transcript levels of fibrotic genes, including Adamts proteinases, integrins, laminins, matrix metalloproteinases and collagens, also showed no difference. Therefore, the accelerated functional declines in T1D cKO hearts are not due to altered extracellular matrix environment, but are rather due to cardiomyocyte dysfunction. We next determined whether the accelerated cardiac dysfunction is mediated via protein acetylation and oxidative stress. NAD-dependent global protein acetylation and inhibitory acetylation of superoxide dismutase 2 were elevated in T1D cKO hearts. Inhibition of SOD2 concomitantly promoted elevation of protein oxidation levels in T1D cKO hearts. The results suggested that NAD redox balance-dependent protein acetylation regulates oxidative stress to promote diabetic cardiomyopathy.


2020 ◽  
Author(s):  
Ying Ann Chiao ◽  
Akash Deep Chakraborty ◽  
Christine M. Light ◽  
Rong Tian ◽  
Junichi Sadoshima ◽  
...  

AbstractBackgroundDiabetes is a risk factor of heart failure and promotes cardiac dysfunction. Diabetic tissues are associated with NAD+ redox imbalance; however, the hypothesis that NAD+ redox imbalance leads to dysfunction of diabetic hearts has not been tested. In this study, we employed mouse models with altered NAD+ redox balance to test the hypothesis.Methods and ResultsDiabetes was induced in C57BL/6 mice by streptozotocin injections, and diabetic cardiomyopathy (DCM) was allowed to develop for 16 weeks. Diabetic stress led to cardiac dysfunction and lowered NAD+/NADH ratio. This diabetogenic regimen was administered to cardiac-specific knockout mice of complex I subunit Ndufs4 (cKO), a model with lowered cardiac NAD+/NADH ratio without baseline dysfunction. Cardiac NAD+ redox imbalance in cKO hearts exacerbated systolic and diastolic dysfunction of diabetic mice in both sexes. Collagen levels and transcript analyses of fibrosis and extracellular matrix-dependent pathways did not show change in diabetic cKO hearts, suggesting that the exacerbated cardiac dysfunction was likely due to cardiomyocyte dysfunction. We found that cardiac NAD+ redox imbalance promoted superoxide dismutase 2 (SOD2) acetylation, protein oxidation, induced troponin I S150 phosphorylation and impaired energetics in diabetic cKO hearts. Importantly, elevation of cardiac NAD+ levels by nicotinamide phosphoribosyltransferase (NAMPT) normalized NAD+ redox balance, over-expression alleviated cardiac dysfunction and reversed pathogenic mechanisms in diabetic mice.ConclusionOur results show that NAD+ redox imbalance to regulate protein acetylation and phosphorylation is a critical mediator of the progression of DCM, and suggest the therapeutic potential of harnessing NAD+ metabolism in DCM.


Author(s):  
Ying Ann Chiao ◽  
Akash Deep Chakraborty ◽  
Christine M. Light ◽  
Rong Tian ◽  
Junichi Sadoshima ◽  
...  

Background: Diabetes is a risk factor for heart failure and promotes cardiac dysfunction. Diabetic tissues are associated with nicotinamide adenine dinucleotide (NAD + ) redox imbalance; however, the hypothesis that NAD + redox imbalance causes diabetic cardiomyopathy has not been tested. This investigation used mouse models with altered NAD + redox balance to test this hypothesis. Methods: Diabetic stress was induced in mice by streptozotocin. Cardiac function was measured by echocardiography. Heart and plasma samples were collected for biochemical, histological, and molecular analyses. Two mouse models with altered NAD + redox states (1, Ndufs4 [NADH:ubiquinone oxidoreductase subunit S4] knockout, cKO, and 2, NAMPT [nicotinamide phosphoribosyltranferase] transgenic mice, NMAPT) were used. Results: Diabetic stress caused cardiac dysfunction and lowered NAD + /NADH ratio (oxidized/reduced ratio of nicotinamide adenine dinucleotide) in wild-type mice. Mice with lowered cardiac NAD + /NADH ratio without baseline dysfunction, cKO mice, were challenged with chronic diabetic stress. NAD + redox imbalance in cKO hearts exacerbated systolic (fractional shortening: 27.6% versus 36.9% at 4 weeks, male cohort P <0.05), and diastolic dysfunction (early-to-late ratio of peak diastolic velocity: 0.99 versus 1.20, P <0.05) of diabetic mice in both sexes. Collagen levels and transcripts of fibrosis and extracellular matrix–dependent pathways did not show changes in diabetic cKO hearts, suggesting that the exacerbated cardiac dysfunction was due to cardiomyocyte dysfunction. NAD + redox imbalance promoted superoxide dismutase 2 acetylation, protein oxidation, troponin I S150 phosphorylation, and impaired energetics in diabetic cKO hearts. Importantly, elevation of cardiac NAD + levels by NAMPT normalized NAD + redox balance, alleviated cardiac dysfunction (fractional shortening: 40.2% versus 24.8% in cKO:NAMPT versus cKO, P <0.05; early-to-late ratio of peak diastolic velocity: 1.32 versus 1.04, P <0.05), and reversed pathogenic mechanisms in diabetic mice. Conclusions: Our results show that NAD + redox imbalance to regulate acetylation and phosphorylation is a critical mediator of the progression of diabetic cardiomyopathy and suggest the therapeutic potential for diabetic cardiomyopathy by harnessing NAD + metabolism.


2019 ◽  
Vol 97 (9) ◽  
pp. 815-819 ◽  
Author(s):  
Naranjan S. Dhalla ◽  
Pallab K. Ganguly ◽  
Sukhwinder K. Bhullar ◽  
Paramjit S. Tappia

Although the sympathetic nervous system plays an important role in the regulation of cardiac function, the overactivation of the sympathetic nervous system under stressful conditions including diabetes has been shown to result in the excessive production of circulating catecholamines as well as an increase in the myocardial concentration of catecholamines. In this brief review, we provide some evidence to suggest that the oxidation products of catecholamines such as aminochrome and oxyradicals, lead to metabolic derangements, Ca2+-handling abnormalities, increase in the availability of intracellular free Ca2+, as well as activation of proteases and changes in myocardial gene expression. These alterations due to elevated levels of circulatory catecholamines are associated with oxidative stress, subcellular remodeling, and the development of cardiac dysfunction in chronic diabetes.


2020 ◽  
Vol 21 (7) ◽  
pp. 2413 ◽  
Author(s):  
Naranjan S. Dhalla ◽  
Anureet K. Shah ◽  
Paramjit S. Tappia

Although the presence of cardiac dysfunction and cardiomyopathy in chronic diabetes has been recognized, the pathophysiology of diabetes-induced metabolic and subcellular changes as well as the therapeutic approaches for the prevention of diabetic cardiomyopathy are not fully understood. Cardiac dysfunction in chronic diabetes has been shown to be associated with Ca2+-handling abnormalities, increase in the availability of intracellular free Ca2+ and impaired sensitivity of myofibrils to Ca2+. Metabolic derangements, including depressed high-energy phosphate stores due to insulin deficiency or insulin resistance, as well as hormone imbalance and ultrastructural alterations, are also known to occur in the diabetic heart. It is pointed out that the activation of the sympathetic nervous system and renin–angiotensin system generates oxidative stress, which produces defects in subcellular organelles including sarcolemma, sarcoplasmic reticulum and myofibrils. Such subcellular remodeling plays a critical role in the pathogenesis of diabetic cardiomyopathy. In fact, blockade of the effects of neurohormonal systems has been observed to attenuate oxidative stress and occurrence of subcellular remodeling as well as metabolic abnormalities in the diabetic heart. This review is intended to describe some of the subcellular and metabolic changes that result in cardiac dysfunction in chronic diabetes. In addition, the therapeutic values of some pharmacological, metabolic and antioxidant interventions will be discussed. It is proposed that a combination therapy employing some metabolic agents or antioxidants with insulin may constitute an efficacious approach for the prevention of diabetic cardiomyopathy.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Yuning Liu ◽  
Shi Wu ◽  
Qian Zhao ◽  
Zhen Yang ◽  
Xiaojun Yan ◽  
...  

Ample clinical case reports suggest a high incidence of cardiomyopathy in diabetes mellitus (DM). Recent evidence supports an essential role of trehalose (TLS) in cardiomyocyte survival signaling. Our previous study found that prokineticin2 (PK2) was involved in the process of diabetic cardiomyopathy (DCM). The present study examined the protective effects and mechanisms of TLS on DM-induced cardiomyocyte injury in mice and H9c2 cardiomyocytes. C57BL/6J mice were intraperitoneally injected with 50 mg·kg-1·d-1 streptozotocin for five consecutive days to establish an experimental diabetic model and then administered TLS (1 mg·g-1·d-1, i.p.) for two days every 4 weeks and given 2% TLS in drinking water for 24 weeks. Echocardiography, myocardial structure, apoptosis, pyroptosis, autophagy, and the PK2/PKR pathway were assessed. Cardiomyocytes exposed to high glucose (HG) were treated with TLS in the absence or presence of the PK2 antagonist PKRA7, and proteins involved in apoptosis, autophagy, and pyroptosis and the PK2/PKR pathways were evaluated using Western blot analysis. Diabetic mice demonstrated metabolic disorder, abnormal myocardial zymograms, and aberrant myocardial systolic and diastolic function, which were accompanied by pronounced apoptosis, pyroptosis, and dampened autophagy. TLS treatment relieved these effects. PK2 and receptor expressions were downregulated in diabetic mice, and TLS nullified this effect. PKRA7 eliminated the impact of TLS on cardiomyocytes. This evidence suggests that TLS rescues DM-induced myocardial function, pyroptosis, and apoptosis, likely via the PK2/PKR pathway.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Chi Fung Lee

Diabetes is linked to altered NAD metabolism whose causal roles in cardiac dysfunction are poorly understood. Synthesis, consumption and redox balance of NAD dictate NAD metabolism and its homeostasis, and we here explored their roles in diabetic cardiomyopathy. 16 week of Type 1 diabetes (T1D) to C57BL6N mice was associated with lowered cardiac NAD/NADH, mild systolic and more severe diastolic dysfunction. We next used mouse models with altered NAD metabolism to determine how NAD redox balance impacts diabetic cardiomyopathy. Using cardiac-specific Ndufs4-KO mice (cKO) as a model of latent decrease in cardiac NAD/NADH, we observed accelerated systolic and diastolic dysfunction (lowered fractional shortening, E’/A’ ratio, and increased e/E’ ratio) in male cKO mice stressed with chronic T1D. Cardiac hypertrophy (heart weight/tibia length), insulin depletion and hyperglycemia levels were similar in these mice. Serum metabolomic analyses (~240 metabolites) also showed unchanged aqueous and lipid metabolite levels, suggesting that the diabetic stresses on these hearts were similar. The accelerated dysfunction of T1D cKO hearts was also observed in another female cohort. Importantly, elevation of cardiac NAD levels to attenuate NAD redox imbalance mitigated the accelerated dysfunction of T1D cKO hearts. In another cohort, control and cKO mice were stressed by 16-week high fat diet feeding. Accelerated systolic and diastolic dysfunction, and increased hypertrophy were observed in T2D cKO mice with similar glycemic levels to control mice. The data suggested that NAD redox imbalance is a positive regulator of cardiac dysfunction induced by T1D or T2D. However, NAD-dependent pathogenic mechanism induced by T1D or T2D (e.g. hypertrophy) can be different, and is under further investigation. Tissue fibrosis and mRNA levels of pro-fibrotic genes, including Adamts proteinases, integrins, laminins, matrix metalloproteinases and collagens were unchanged in T1D cKO hearts. Therefore, the accelerated dysfunction of T1D cKO hearts is due to cardiomyocyte dysfunction. We examined how NAD metabolism, other than the redox balance, may alter cardiomyocyte function. Levels of metabolite and mRNA regulating NAD synthesis and consumption pathways were measured. Of 32 transcripts assayed, Nmrk2 levels were uniquely up-regulated in T1D cKO hearts, and lowered by elevation of cardiac NAD levels. NMRK product levels were concomitantly decreased in T1D cKO hearts. NAD-dependent global acetylation and inhibitory superoxide dismutase 2 acetylation were increased in T1D cKO hearts. Protein oxidation levels were concomitantly raised. Hyperacetylation in proteins like CaM kinase was associated with increased phosphorylation in troponin I, not in MyBPC or PLN in T1D cKO hearts. These data support the emerging, multifaceted roles of altered NAD metabolism in the progression of diabetic cardiomyopathy.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Vengadeshprabhu Karuppagounder ◽  
Somasundaram Arumugam ◽  
Remya Sreedhar ◽  
Vijayasree V Giridharan ◽  
Rejina Afrin ◽  
...  

Background: 14-3-3η family members are dimeric phosphoserine-binding proteins that participate in signal transduction and checkpoint control pathways. Anthracycline anticancer drug doxorubicin (Dox) can induce cardiotoxicity, which is believed to be based on inflammatory or oxidative injury. However, the role of 14-3-3η is not clear in Dox induced cardiac injury. We examined the role of 14-3-3η protein and apoptosis signal-regulating kinase-1 (Ask1) and inflammatory signaling by using transgenic mice with cardiac-specific expression of a dominant-negative 14-3-3η protein mutant (DN 14-3-3) in Dox induced cardiac injury. Methods: Cardiac dysfunction was induced by a single injection of Dox into wild-type (WT) and DN 14-3-3η mice. By the end of the study, echocardiography was performed to assess the cardiac function. The heart tissues were used for histopathology and western blotting. Results: Left ventricular (LV) fractional shortening and ejection fraction were dramatically decreased in DN 14-3-3η mice, when compared to WT mice after Dox injection. Inactivation of 14-3-3η protein significantly increased Dox induced mortality. Significant Ask1 activation in DN 14-3-3η after Dox injection was evidenced by pronounced de-phosphorylation at Ser-967 and intense immunofluorescence observed LV sections. Marked increase in myocardial apoptosis, cardiac hypertrophy, and fibrosis were observed with a corresponding up-regulation of proinflammatory factors and cytokine expression in DN 14-3-3η mice after Dox injection. Furthermore cardiac expression of high mobility group box (HMGB)1 and its cascade protein expressions were significantly up-regulated in DN 14-3-3η mice compared to WT mice after Dox injection. Conclusion: Taken together, these findings suggest that depletion of 14-3-3η protein causes reduce survival rate in mice with cardiac dysfunction, presumably via activation of downstream Ask1 signaling pathways. This may provide a novel therapeutic strategy against Dox-induced cardiac injury by regulating Ask1 signaling.


2018 ◽  
Vol 77 (4) ◽  
pp. 173-184
Author(s):  
Wenxing Yang ◽  
Ying Sun

Abstract. The causal role of a unidirectional orthography in shaping speakers’ mental representations of time seems to be well established by many psychological experiments. However, the question of whether bidirectional writing systems in some languages can also produce such an impact on temporal cognition remains unresolved. To address this issue, the present study focused on Japanese and Taiwanese, both of which have a similar mix of texts written horizontally from left to right (HLR) and vertically from top to bottom (VTB). Two experiments were performed which recruited Japanese and Taiwanese speakers as participants. Experiment 1 used an explicit temporal arrangement design, and Experiment 2 measured implicit space-time associations in participants along the horizontal (left/right) and the vertical (up/down) axis. Converging evidence gathered from the two experiments demonstrate that neither Japanese speakers nor Taiwanese speakers aligned their vertical representations of time with the VTB writing orientation. Along the horizontal axis, only Japanese speakers encoded elapsing time into a left-to-right linear layout, which was commensurate with the HLR writing direction. Therefore, two distinct writing orientations of a language could not bring about two coexisting mental time lines. Possible theoretical implications underlying the findings are discussed.


Sign in / Sign up

Export Citation Format

Share Document