scholarly journals Machine Learning to Classify Intracardiac Electrical Patterns During Atrial Fibrillation

Author(s):  
Mahmood I. Alhusseini ◽  
Firas Abuzaid ◽  
Albert J. Rogers ◽  
Junaid A.B. Zaman ◽  
Tina Baykaner ◽  
...  

Background: Advances in ablation for atrial fibrillation (AF) continue to be hindered by ambiguities in mapping, even between experts. We hypothesized that convolutional neural networks (CNN) may enable objective analysis of intracardiac activation in AF, which could be applied clinically if CNN classifications could also be explained. Methods: We performed panoramic recording of bi-atrial electrical signals in AF. We used the Hilbert-transform to produce 175 000 image grids in 35 patients, labeled for rotational activation by experts who showed consistency but with variability (kappa [κ]=0.79). In each patient, ablation terminated AF. A CNN was developed and trained on 100 000 AF image grids, validated on 25 000 grids, then tested on a separate 50 000 grids. Results: In the separate test cohort (50 000 grids), CNN reproducibly classified AF image grids into those with/without rotational sites with 95.0% accuracy (CI, 94.8%–95.2%). This accuracy exceeded that of support vector machines, traditional linear discriminant, and k-nearest neighbor statistical analyses. To probe the CNN, we applied gradient-weighted class activation mapping which revealed that the decision logic closely mimicked rules used by experts (C statistic 0.96). Conclusions: CNNs improved the classification of intracardiac AF maps compared with other analyses and agreed with expert evaluation. Novel explainability analyses revealed that the CNN operated using a decision logic similar to rules used by experts, even though these rules were not provided in training. We thus describe a scaleable platform for robust comparisons of complex AF data from multiple systems, which may provide immediate clinical utility to guide ablation. Registration: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT02997254. Graphic Abstract: A graphic abstract is available for this article.

2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


2020 ◽  
Author(s):  
Nazrul Anuar Nayan ◽  
Hafifah Ab Hamid ◽  
Mohd Zubir Suboh ◽  
Noraidatulakma Abdullah ◽  
Rosmina Jaafar ◽  
...  

Abstract Background: Cardiovascular disease (CVD) is the leading cause of deaths worldwide. In 2017, CVD contributed to 13,503 deaths in Malaysia. The current approaches for CVD prediction are usually invasive and costly. Machine learning (ML) techniques allow an accurate prediction by utilizing the complex interactions among relevant risk factors. Results: This study presents a case–control study involving 60 participants from The Malaysian Cohort, which is a prospective population-based project. Five parameters, namely, the R–R interval and root mean square of successive differences extracted from electrocardiogram (ECG), systolic and diastolic blood pressures, and total cholesterol level, were statistically significant in predicting CVD. Six ML algorithms, namely, linear discriminant analysis, linear and quadratic support vector machines, decision tree, k-nearest neighbor, and artificial neural network (ANN), were evaluated to determine the most accurate classifier in predicting CVD risk. ANN, which achieved 90% specificity, 90% sensitivity, and 90% accuracy, demonstrated the highest prediction performance among the six algorithms. Conclusions: In summary, by utilizing ML techniques, ECG data can serve as a good parameter for CVD prediction among the Malaysian multiethnic population.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2814 ◽  
Author(s):  
Xiaoguang Liu ◽  
Huanliang Li ◽  
Cunguang Lou ◽  
Tie Liang ◽  
Xiuling Liu ◽  
...  

Falls are the major cause of fatal and non-fatal injury among people aged more than 65 years. Due to the grave consequences of the occurrence of falls, it is necessary to conduct thorough research on falls. This paper presents a method for the study of fall detection using surface electromyography (sEMG) based on an improved dual parallel channels convolutional neural network (IDPC-CNN). The proposed IDPC-CNN model is designed to identify falls from daily activities using the spectral features of sEMG. Firstly, the classification accuracy of time domain features and spectrograms are compared using linear discriminant analysis (LDA), k-nearest neighbor (KNN) and support vector machine (SVM). Results show that spectrograms provide a richer way to extract pattern information and better classification performance. Therefore, the spectrogram features of sEMG are selected as the input of IDPC-CNN to distinguish between daily activities and falls. Finally, The IDPC-CNN is compared with SVM and three different structure CNNs under the same conditions. Experimental results show that the proposed IDPC-CNN achieves 92.55% accuracy, 95.71% sensitivity and 91.7% specificity. Overall, The IDPC-CNN is more effective than the comparison in accuracy, efficiency, training and generalization.


Author(s):  
Nayan Nazrul Anuar ◽  
Ab Hamid Hafifah ◽  
Suboh Mohd Zubir ◽  
Abdullah Noraidatulakma ◽  
Jaafar Rosmina ◽  
...  

<p>Cardiovascular disease (CVD) is the leading cause of deaths worldwide. In 2017, CVD contributed to 13,503 deaths in Malaysia. The current approaches for CVD prediction are usually invasive and costly. Machine learning (ML) techniques allow an accurate prediction by utilizing the complex interactions among relevant risk factors. This study presents a case–control study involving 60 participants from The Malaysian Cohort, which is a prospective population-based project. Five parameters, namely, the R–R interval and root mean square of successive differences extracted from electrocardiogram (ECG), systolic and diastolic blood pressures, and total cholesterol level, were statistically significant in predicting CVD. Six ML algorithms, namely, linear discriminant analysis, linear and quadratic support vector machines, decision tree, k-nearest neighbor, and artificial neural network (ANN), were evaluated to determine the most accurate classifier in predicting CVD risk. ANN, which achieved 90% specificity, 90% sensitivity, and 90% accuracy, demonstrated the highest prediction performance among the six algorithms. In summary, by utilizing ML techniques, ECG data can serve as a good parameter for CVD prediction among the Malaysian multiethnic population.</p>


Electroencephalographic (EEG) signals are the preferred input for non-invasive Brain-Computer Interface (BCI). Efficient signal processing strategies, including feature extraction and classification, are required to distinguish the underlying task of BCI. This work proposes the optimized common spatial pattern(CSP) filtering technique as the feature extraction method for collecting the spatially spread variation of the signal. The bandpass filter (BPF) designed for this work assures the availability of event-related synchronized (ERS) and event-related desynchronized (ERD) signal as input to the spatial filter. This work takes consideration of the area-specific electrodes for feature formation. This work further proposes a comparative analysis of classifier algorithms for classification accuracy(CA), sensitivity and specificity and the considered algorithms are Support Vector Machine(SVM), Linear Discriminant Analysis(LDA), and K-Nearest Neighbor(KNN). Performance parameters considered are CA, sensitivity, and selectivity, which can judge the method not only for high CA but also inclining towards the particular class. Thus it will direct in the selection of appropriate classifier as well as tuning the classifier to get the balanced results. In this work, CA, the prior performance parameter is obtained to be 88.2% sensitivity of 94.2% and selectivity 82.2% for the cosine KNN classifier. SVM with linear kernel function also gives the comparable results, thus concluding that the robust classifiers perform well for all parameters in case of CSP for feature extraction.


2021 ◽  
Author(s):  
Monika Jyotiyana ◽  
Nishtha Kesswani ◽  
Munish Kumar

Abstract Deep learning techniques are playing an important role in the classification and prediction of diseases. Undoubtedly deep learning has a promising future in the health sector, especially in medical imaging. The popularity of deep learning approaches is because of their ability to handle a large amount of data related to the patients with accuracy, reliability in a short span of time. However, the practitioners may take time in analyzing and generating reports. In this paper, we have proposed a Deep Neural Network-based classification model for Parkinson’s disease. Our proposed method is one such good example giving faster and more accurate results for the classification of Parkinson’s disease patients with excellent accuracy of 94.87%. Based on the attributes of the dataset of the patient, the model can be used for the identification of Parkinsonism's. We have also compared the results with other existing approaches like Linear Discriminant Analysis, Support Vector Machine, K-Nearest Neighbor, Decision Tree, Classification and Regression Trees, Random Forest, Linear Regression, Logistic Regression, Multi-Layer Perceptron, and Naive Bayes.


Author(s):  
Khairul Anam ◽  
Adel Al-Jumaily

Myoelectric pattern recognition (MPR) is used to detect user’s intention to achieve a smooth interaction between human and machine. The performance of MPR is influenced by the features extracted and the classifier employed. A kernel extreme learning machine especially radial basis function extreme learning machine (RBF-ELM) has emerged as one of the potential classifiers for MPR. However, RBF-ELM should be optimized to work efficiently. This paper proposed an optimization of RBF-ELM parameters using hybridization of particle swarm optimization (PSO) and a wavelet function. These proposed systems are employed to classify finger movements on the amputees and able-bodied subjects using electromyography signals. The experimental results show that the accuracy of the optimized RBF-ELM is 95.71% and 94.27% in the healthy subjects and the amputees, respectively. Meanwhile, the optimization using PSO only attained the average accuracy of 95.53 %, and 92.55 %, on the healthy subjects and the amputees, respectively. The experimental results also show that SW-RBF-ELM achieved the accuracy that is better than other well-known classifiers such as support vector machine (SVM), linear discriminant analysis (LDA) and k-nearest neighbor (kNN).


Kybernetes ◽  
2019 ◽  
Vol 49 (10) ◽  
pp. 2547-2567 ◽  
Author(s):  
Himanshu Sharma ◽  
Anu G. Aggarwal

Purpose The experiential nature of travel and tourism services has popularized the importance of electronic word-of-mouth (EWOM) among potential customers. EWOM has a significant influence on hotel booking intention of customers as they tend to trust EWOM more than the messages spread by marketers. Amid abundant reviews available online, it becomes difficult for travelers to identify the most significant ones. This questions the credibility of reviewers as various online businesses allow reviewers to post their feedback using nickname or email address rather than using real name, photo or other personal information. Therefore, this study aims to determine the factors leading to reviewer credibility. Design/methodology/approach The paper proposes an econometric model to determine the variables that affect the reviewer’s credibility in the hospitality and tourism sector. The proposed model uses quantifiable variables of reviewers and reviews to estimate reviewer credibility, defined in terms of proportion of number of helpful votes received by a reviewer to the number of total reviews written by him. This covers both aspects of source credibility i.e. trustworthiness and expertness. The authors have used the data set of TripAdvisor.com to validate the models. Findings Regression analysis significantly validated the econometric models proposed here. To check the predictive efficiency of the models, predictive modeling using five commonly used classifiers such as random forest (RF), linear discriminant analysis, k-nearest neighbor, decision tree and support vector machine is performed. RF gave the best accuracy for the overall model. Practical implications The findings of this research paper suggest various implications for hoteliers and managers to help retain credible reviewers in the online travel community. This will help them to achieve long term relationships with the clients and increase their trust in the brand. Originality/value To the best of authors’ knowledge, this study performs an econometric modeling approach to find determinants of reviewer credibility, not conducted in previous studies. Moreover, the study contracts from earlier works by considering it to be an endogenous variable, rather than an exogenous one.


2021 ◽  
pp. 179-218
Author(s):  
Magy Seif El-Nasr ◽  
Truong Huy Nguyen Dinh ◽  
Alessandro Canossa ◽  
Anders Drachen

This chapter discusses several classification and regression methods that can be used with game data. Specifically, we will discuss regression methods, including Linear Regression, and classification methods, including K-Nearest Neighbor, Naïve Bayes, Logistic Regression, Linear Discriminant Analysis, Support Vector Machines, Decisions Trees, and Random Forests. We will discuss how you can setup the data to apply these algorithms, as well as how you can interpret the results and the pros and cons for each of the methods discussed. We will conclude the chapter with some remarks on the process of application of these methods to games and the expected outcomes. The chapter also includes practical labs to walk you through the process of applying these methods to real game data.


2020 ◽  
Vol 10 (3) ◽  
pp. 769-774
Author(s):  
Shiliang Shao ◽  
Ting Wang ◽  
Chunhe Song ◽  
Yun Su ◽  
Xingchi Chen ◽  
...  

In this paper, eight novel instantaneous indices of short-time heart rate variability (HRV) signals are proposed for prediction of cardiovascular and cerebrovascular events. The indices are based on Bubble Entropy (BE) and Singular Value Decompose (SVD). The process of indices calculation is as follows, firstly, the instantaneous amplitude (IA), instantaneous frequency (IF) and instantaneous phase (IP) of HRV signals are estimated by the Hilbert transform. Secondly, according to the HRV, IA, IP and IF, the BE and singular value (SV) is calculated, then eight novel indices are obtained, they are BEHRV, BEIA, BEIF, BEIP, SVHRV, SVIA, SVIF and SVIP. Last but not least, in order to evaluate the performance of the eight novel indices for prediction of cardiovascular and cerebrovascular events, the difference analysis of eight indices is carried out by t-test. According to the p value, seven of the eight indices BEHRV, BEIA, BEIF, BEIP, SVIA, SVIF and SVIP are thought to be the indices to discriminate the E group and N group. The K-nearest neighbor (KNN), support vector machine (SVM) and decision tree (DT) are applied on the seven novel indices. The results are that, seven novel indices are significantly different between the events and non-events groups, and the SVM classifier has the highest classification Acc and Spe for prediction of cardiovascular and cerebrovascular events, they are 88.31% and 90.19%, respectively.


Sign in / Sign up

Export Citation Format

Share Document