scholarly journals Cardiovascular Disease Prediction from Electrocardiogram by Using Machine Learning

Author(s):  
Nayan Nazrul Anuar ◽  
Ab Hamid Hafifah ◽  
Suboh Mohd Zubir ◽  
Abdullah Noraidatulakma ◽  
Jaafar Rosmina ◽  
...  

<p>Cardiovascular disease (CVD) is the leading cause of deaths worldwide. In 2017, CVD contributed to 13,503 deaths in Malaysia. The current approaches for CVD prediction are usually invasive and costly. Machine learning (ML) techniques allow an accurate prediction by utilizing the complex interactions among relevant risk factors. This study presents a case–control study involving 60 participants from The Malaysian Cohort, which is a prospective population-based project. Five parameters, namely, the R–R interval and root mean square of successive differences extracted from electrocardiogram (ECG), systolic and diastolic blood pressures, and total cholesterol level, were statistically significant in predicting CVD. Six ML algorithms, namely, linear discriminant analysis, linear and quadratic support vector machines, decision tree, k-nearest neighbor, and artificial neural network (ANN), were evaluated to determine the most accurate classifier in predicting CVD risk. ANN, which achieved 90% specificity, 90% sensitivity, and 90% accuracy, demonstrated the highest prediction performance among the six algorithms. In summary, by utilizing ML techniques, ECG data can serve as a good parameter for CVD prediction among the Malaysian multiethnic population.</p>

2020 ◽  
Author(s):  
Nazrul Anuar Nayan ◽  
Hafifah Ab Hamid ◽  
Mohd Zubir Suboh ◽  
Noraidatulakma Abdullah ◽  
Rosmina Jaafar ◽  
...  

Abstract Background: Cardiovascular disease (CVD) is the leading cause of deaths worldwide. In 2017, CVD contributed to 13,503 deaths in Malaysia. The current approaches for CVD prediction are usually invasive and costly. Machine learning (ML) techniques allow an accurate prediction by utilizing the complex interactions among relevant risk factors. Results: This study presents a case–control study involving 60 participants from The Malaysian Cohort, which is a prospective population-based project. Five parameters, namely, the R–R interval and root mean square of successive differences extracted from electrocardiogram (ECG), systolic and diastolic blood pressures, and total cholesterol level, were statistically significant in predicting CVD. Six ML algorithms, namely, linear discriminant analysis, linear and quadratic support vector machines, decision tree, k-nearest neighbor, and artificial neural network (ANN), were evaluated to determine the most accurate classifier in predicting CVD risk. ANN, which achieved 90% specificity, 90% sensitivity, and 90% accuracy, demonstrated the highest prediction performance among the six algorithms. Conclusions: In summary, by utilizing ML techniques, ECG data can serve as a good parameter for CVD prediction among the Malaysian multiethnic population.


2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jintao Zhang ◽  
Shuang Lai ◽  
Huahua Yu ◽  
Erjie Wang ◽  
Xizhe Wang ◽  
...  

As the core component of agricultural robots, robotic grippers are widely used for plucking, picking, and harvesting fruits and vegetables. Secure grasping is a severe challenge in agricultural applications because of the variation in the shape and hardness of agricultural products during maturation, as well as their variety and delicacy. In this study, a fruit identification method utilizing an adaptive gripper with tactile sensing and machine learning algorithms is reported. An adaptive robotic gripper is designed and manufactured to perform adaptive grasping. A tactile sensing information acquisition circuit is built, and force and bending sensors are integrated into the robotic gripper to measure the contact force distribution on the contact surface and the deformation of the soft fingers. A robotic manipulator platform is developed to collect the tactile sensing data in the grasping process. The performance of the random forest (RF), k-nearest neighbor (KNN), support vector classification (SVC), naive Bayes (NB), linear discriminant analysis (LDA), and ridge regression (RR) classifiers in identifying and classifying five types of fruits using the adaptive gripper is evaluated and compared. The RF classifier achieves the highest accuracy of 98%, while the accuracies of the other classifiers vary from 74% to 97%. The experiment illustrates that efficient and accurate fruit identification can be realized with the adaptive gripper and machine learning classifiers, and that the proposed method can provide a reference for controlling the grasping force and planning the robotic motion in the plucking, picking, and harvesting of fruits and vegetables.


Electrocardiogram (ECG) is the analysis of the electrical movement of the heart over a period of time. The detailed information about the condition of the heart is measured by analyzing the ECG signal. Wavelet transform, fast Fourier transform are the different methods to disorganize cardiac disease. The paper elaborates the survey on ECG signal analysis and related study on arrhythmic and non arrhythmic data. Here we discuss the efficient feature extraction process for electrocardiogram, where based on position and priority six best P-QRS-T fragments are studied. This survey examines the the outcome of the system by using various Machine learning classification algorithms for feature extraction and analysis of ECG Signals. Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Network (ANN) are the most important algorithms used here for this purpose. There are several publicly available data sets which are used for arrhythmia analysis and among them MIT-BIH ECG-ID database is mostly used. The drawbacks and limitations are also discussed here and from there future challenges and concluding remarks can be done.


Author(s):  
Vamsi K. Manchala ◽  
Alvaro V. Clara ◽  
Susheelkumar C. Subramanian ◽  
Sangram Redkar ◽  
Thomas Sugar

Abstract It is important to know and be able to classify the drivers’ behavior as good, bad, keen or aggressive, which would aid in driver assist systems to avoid vehicle crashes. This research attempts to develop, test, and compare the performance of machine learning methods for classifying human driving behavior. It also proposes to correlate driver affective states with the driving behavior. The major contributions of this work are to classify the driver behavior using Electroencephalograph (EEG) while driving simulated vehicle and compare them with the behavior classified using vehicle parameters and affective states. The study involved both classical machine learning techniques such as k-Nearest Neighbor (KNN), Support Vector Machine (SVM), Artificial Neural Network (ANN) and latest “unsupervised” Hybrid Deep Learning techniques, and compared the accuracy of classification across subjects, various driving scenarios and affective states.


Author(s):  
Mohamed Alloghani ◽  
Ahmed Aljaaf ◽  
Abir Hussain ◽  
Thar Baker ◽  
Jamila Mustafina ◽  
...  

Abstract Background Machine learning is a branch of Artificial Intelligence that is concerned with the design and development of algorithms, and it enables today’s computers to have the property of learning. Machine learning is gradually growing and becoming a critical approach in many domains such as health, education, and business. Methods In this paper, we applied machine learning to the diabetes dataset with the aim of recognizing patterns and combinations of factors that characterizes or explain re-admission among diabetes patients. The classifiers used include Linear Discriminant Analysis, Random Forest, k–Nearest Neighbor, Naïve Bayes, J48 and Support vector machine. Results Of the 100,000 cases, 78,363 were diabetic and over 47% were readmitted.Based on the classes that models produced, diabetic patients who are more likely to be readmitted are either women, or Caucasians, or outpatients, or those who undergo less rigorous lab procedures, treatment procedures, or those who receive less medication, and are thus discharged without proper improvements or administration of insulin despite having been tested positive for HbA1c. Conclusion Diabetic patients who do not undergo vigorous lab assessments, diagnosis, medications are more likely to be readmitted when discharged without improvements and without receiving insulin administration, especially if they are women, Caucasians, or both.


Author(s):  
Minh Tuan Le ◽  
Minh Thanh Vo ◽  
Nhat Tan Pham ◽  
Son V.T Dao

In the current health system, it is very difficult for medical practitioners/physicians to diagnose the effectiveness of heart contraction. In this research, we proposed a machine learning model to predict heart contraction using an artificial neural network (ANN). We also proposed a novel wrapper-based feature selection utilizing a grey wolf optimization (GWO) to reduce the number of required input attributes. In this work, we compared the results achieved using our method and several conventional machine learning algorithms approaches such as support vector machine, decision tree, K-nearest neighbor, naïve bayes, random forest, and logistic regression. Computational results show not only that much fewer features are needed, but also higher prediction accuracy can be achieved around 87%. This work has the potential to be applicable to clinical practice and become a supporting tool for doctors/physicians.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-6
Author(s):  
Irzal Ahmad Sabilla ◽  
Chastine Fatichah

Vegetables are ingredients for flavoring, such as tomatoes and chilies. A Both of these ingredients are processed to accompany the people's staple food in the form of sauce and seasoning. In supermarkets, these vegetables can be found easily, but many people do not understand how to choose the type and quality of chilies and tomatoes. This study discusses the classification of types of cayenne, curly, green, red chilies, and tomatoes with good and bad conditions using machine learning and contrast enhancement techniques. The machine learning methods used are Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), Linear Discriminant Analysis (LDA), and Random Forest (RF). The results of testing the best method are measured based on the value of accuracy. In addition to the accuracy of this study, it also measures the speed of computation so that the methods used are efficient.


2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


2021 ◽  
Vol 13 (6) ◽  
pp. 3497
Author(s):  
Hassan Adamu ◽  
Syaheerah Lebai Lutfi ◽  
Nurul Hashimah Ahamed Hassain Malim ◽  
Rohail Hassan ◽  
Assunta Di Vaio ◽  
...  

Sustainable development plays a vital role in information and communication technology. In times of pandemics such as COVID-19, vulnerable people need help to survive. This help includes the distribution of relief packages and materials by the government with the primary objective of lessening the economic and psychological effects on the citizens affected by disasters such as the COVID-19 pandemic. However, there has not been an efficient way to monitor public funds’ accountability and transparency, especially in developing countries such as Nigeria. The understanding of public emotions by the government on distributed palliatives is important as it would indicate the reach and impact of the distribution exercise. Although several studies on English emotion classification have been conducted, these studies are not portable to a wider inclusive Nigerian case. This is because Informal Nigerian English (Pidgin), which Nigerians widely speak, has quite a different vocabulary from Standard English, thus limiting the applicability of the emotion classification of Standard English machine learning models. An Informal Nigerian English (Pidgin English) emotions dataset is constructed, pre-processed, and annotated. The dataset is then used to classify five emotion classes (anger, sadness, joy, fear, and disgust) on the COVID-19 palliatives and relief aid distribution in Nigeria using standard machine learning (ML) algorithms. Six ML algorithms are used in this study, and a comparative analysis of their performance is conducted. The algorithms are Multinomial Naïve Bayes (MNB), Support Vector Machine (SVM), Random Forest (RF), Logistics Regression (LR), K-Nearest Neighbor (KNN), and Decision Tree (DT). The conducted experiments reveal that Support Vector Machine outperforms the remaining classifiers with the highest accuracy of 88%. The “disgust” emotion class surpassed other emotion classes, i.e., sadness, joy, fear, and anger, with the highest number of counts from the classification conducted on the constructed dataset. Additionally, the conducted correlation analysis shows a significant relationship between the emotion classes of “Joy” and “Fear”, which implies that the public is excited about the palliatives’ distribution but afraid of inequality and transparency in the distribution process due to reasons such as corruption. Conclusively, the results from this experiment clearly show that the public emotions on COVID-19 support and relief aid packages’ distribution in Nigeria were not satisfactory, considering that the negative emotions from the public outnumbered the public happiness.


Sign in / Sign up

Export Citation Format

Share Document