scholarly journals A Rho Kinase/Myocardin-Related Transcription Factor-A–Dependent Mechanism Underlies the Sphingosylphosphorylcholine-Induced Differentiation of Mesenchymal Stem Cells Into Contractile Smooth Muscle Cells

2008 ◽  
Vol 103 (6) ◽  
pp. 635-642 ◽  
Author(s):  
Eun Su Jeon ◽  
Won Sun Park ◽  
Mi Jeong Lee ◽  
Young Mi Kim ◽  
Jin Han ◽  
...  
2020 ◽  
Vol 318 (5) ◽  
pp. C981-C990 ◽  
Author(s):  
Lan Chen ◽  
Noboru Fukuda ◽  
Shoichi Shimizu ◽  
Hiroki Kobayashi ◽  
Sho Tanaka ◽  
...  

We showed that increased expression of complement 3 (C3) induces dedifferentiation of mesenchymal cells and epithelial mesenchymal transition, which activate the local renin-angiotensin system (RAS) that contributes to cardiovascular and renal remodeling in spontaneously hypertensive rats (SHRs). In the present study, to investigate contributions of C3 to the development of the pathogenesis of hypertension, we evaluated the formation of renin-producing cells and roles of C3 in renin generation during differentiation of primary bone marrow-mesenchymal stem cells (MSCs) from C57BL/6 mice, Wistar-Kyoto (WKY) rats, and SHRs to smooth muscle cells (SMCs) with transforming growth factor-β1. The expression of renin transiently increased with increases in transcription factor liver X receptor α (LXRα), and expression of C3 and Krüppel -like factor 5 (KLF5) increased during differentiation of MSCs from C57BL/6 mice, WKY rats, and SHRs to SMCs. Exogenous C3a stimulated renin and LXRα expression accompanied by nuclear translocation of LXRα. C3a receptor antagonist SB290157 suppressed renin and LXRα expression, with inhibition of nuclear translocation of LXRα during the differentiation of mouse MSCs to SMCs. The expression of C3 and KLF5 was significantly higher in the differentiated cells from SHRs compared with the cells from WKY rats during differentiation. Renin-producing cells were formed during differentiation of MSCs to SMCs, and renin generation was observed in undifferentiated SMCs, in which transient expression of renin in the differentiated cells with lower differentiation stage was stronger from SHRs than that from WKY rats. Expression and nuclear localization of LXRα in the differentiated cells from SHRs were stronger than that from WKY rats. C3 was important in forming and maintaining this undifferentiated state of SMCs from MSCs to generate renin with increases in transcription factor LXRα and KLF5. Increases in C3 expression maintain the undifferentiated state of SMCs from MSCs to generate renin that activates RAS and contributes to the pathogenesis of hypertension in SHRs.


2020 ◽  
Vol 10 (03) ◽  
pp. e335-e341
Author(s):  
Arunmani Mani ◽  
John W. Hotra ◽  
Sean C. Blackwell ◽  
Laura Goetzl ◽  
Jerrie S. Refuerzo

Abstract Objective The aim of this study was to determine if mesenchymal stem cells (MSCs) would suppress the inflammatory response in human uterine cells in an in vitro lipopolysaccharide (LPS)-based preterm birth (PTB) model. Study Design Cocultures of human uterine smooth muscle cells (HUtSMCs) and MSCs were exposed to 5 μg/mL LPS for 4 hours and further challenged with 1 μg/mL LPS for a subsequent 24 hours. Key elements of the parturition cascade regulated by toll-like receptors (TLRs) through activation of mitogen-activated protein kinases (MAPKs) were quantified in culture supernatant as biomarkers of MSC modulation. Results Coculture with MSCs significantly attenuated TLR-4, p-JNK, and p- extracellular signal-regulated kinase 1/2 (ERK1/2) protein levels compared with HUtSMCs monoculture (p = 0.05). In addition, coculture was associated with significant inhibition of proinflammatory cytokines interleukin (IL)-6 and IL-8 (p = 0.0001) and increased production of anti-inflammatory cytokines IL-10 and transforming growth factor (TGF)-β1 (p = 0.0001). Conclusion MSCs appear to play a role in significantly attenuating LPS-mediated inflammation via alteration of down-stream MAPKs. MSCs may represent a novel, cell-based therapy in women with increased risk of inflammatory-mediated preterm birth.


2021 ◽  
Author(s):  
Rowoon Park ◽  
Jung Won Yoon ◽  
Jin-Ho Lee ◽  
Suck Won Hong ◽  
Jae Ho Kim

Abstract The topographical interface of the extracellular environment has been appreciated as a principal biophysical regulator for modulating cell functions, such as adhesion, migration, proliferation, and differentiation. Despite the existed approaches that use two-dimensional nanomaterials to provide beneficial effects, opportunities evaluating their impact on stem cells remain open to elicit unprecedented cellular responses. Herein, we report an ultrathin cell-culture platform with potential-responsive nanoscale biointerfaces for monitoring mesenchymal stem cells (MSCs). We designed an intriguing nanostructured array through self-assembly of graphene oxide sheets and subsequent lithographical patterning method to produce chemophysically defined regions. MSCs cultured on anisotropic micro/nanoscale patterned substrate were spontaneously organized in a highly ordered configuration mainly due to the cell-repellent interactions. Moreover, the spatially aligned MSCs were spontaneously differentiated into smooth muscle cells upon the specific crosstalk between cells. This work provides a robust strategy for directing stem cells and differentiation, which can be utilized as a potential cell culture platform to understand cell-substrate or cell-cell interactions, further developing tissue repair and stem cell-based therapies.


Sign in / Sign up

Export Citation Format

Share Document