scholarly journals Modeling Human Disease Phenotype in Model Organisms

2011 ◽  
Vol 109 (4) ◽  
pp. 356-359 ◽  
Author(s):  
Ali J. Marian
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Katarzyna I. Szczerkowska ◽  
Silvia Petrezselyova ◽  
Jiri Lindovsky ◽  
Marcela Palkova ◽  
Jan Dvorak ◽  
...  

Author(s):  
Timothy J. Hines ◽  
Cathleen Lutz ◽  
Stephen A. Murray ◽  
Robert W. Burgess

As sequencing technology improves, the identification of new disease-associated genes and new alleles of known genes is rapidly increasing our understanding of the genetic underpinnings of rare diseases, including neuromuscular diseases. However, precisely because these disorders are rare and often heterogeneous, they are difficult to study in patient populations. In parallel, our ability to engineer the genomes of model organisms, such as mice or rats, has gotten increasingly efficient through techniques such as CRISPR/Cas9 genome editing, allowing the creation of precision human disease models. Such in vivo model systems provide an efficient means for exploring disease mechanisms and identifying therapeutic strategies. Furthermore, animal models provide a platform for preclinical studies to test the efficacy of those strategies. Determining whether the same mechanisms are involved in the human disease and confirming relevant parameters for treatment ideally involves a human experimental system. One system currently being used is induced pluripotent stem cells (iPSCs), which can then be differentiated into the relevant cell type(s) for in vitro confirmation of disease mechanisms and variables such as target engagement. Here we provide a demonstration of these approaches using the example of tRNA-synthetase-associated inherited peripheral neuropathies, rare forms of Charcot-Marie-Tooth disease (CMT). Mouse models have led to a better understanding of both the genetic and cellular mechanisms underlying the disease. To determine if the mechanisms are similar in human cells, we will use genetically engineered iPSC-based models. This will allow comparisons of different CMT-associated GARS alleles in the same genetic background, reducing the variability found between patient samples and simplifying the availability of cell-based models for a rare disease. The necessity of integrating mouse and human models, strategies for accomplishing this integration, and the challenges of doing it at scale are discussed using recently published work detailing the cellular mechanisms underlying GARS-associated CMT as a framework.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1303
Author(s):  
Tiziana Cervelli ◽  
Alvaro Galli

At present, the great challenge in human genetics is to provide significance to the growing amount of human disease-associated gene variants identified by next generation DNA sequencing technologies. Increasing evidences suggest that model organisms are of pivotal importance to addressing this issue. Due to its genetic tractability, the yeast Saccharomyces cerevisiae represents a valuable model organism for understanding human genetic variability. In the present review, we show how S. cerevisiae has been used to study variants of genes involved in different diseases and in different pathways, highlighting the versatility of this model organism.


2020 ◽  
Vol 8 (2) ◽  
pp. 10
Author(s):  
Michael T. Chin ◽  
Simon J. Conway

Tafazzin, an enzyme associated with the rare inherited x-linked disorder Barth Syndrome, is a nuclear encoded mitochondrial transacylase that is highly conserved across multiple species and plays an important role in mitochondrial function. Numerous studies have elucidated the mechanisms by which Tafazzin affects mitochondrial function, but its effects on development and susceptibility to adult disease are incompletely understood. The purpose of this review is to highlight previous functional studies across a variety of model organisms, introduce recent studies that show an important role in development, and also to provide an update on the role of Tafazzin in human disease. The profound effects of Tafazzin on cardiac development and adult cardiac homeostasis will be emphasized. These studies underscore the importance of mitochondrial function in cardiac development and disease, and also introduce the concept of Tafazzin as a potential therapeutic modality.


Biology Open ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. bio052332 ◽  
Author(s):  
Sarita Hebbar ◽  
Malte Lehmann ◽  
Sarah Behrens ◽  
Catrin Hälsig ◽  
Weihua Leng ◽  
...  

ABSTRACTRetinitis pigmentosa (RP) is a clinically heterogeneous disease affecting 1.6 million people worldwide. The second-largest group of genes causing autosomal dominant RP in human encodes regulators of the splicing machinery. Yet, how defects in splicing factor genes are linked to the aetiology of the disease remains largely elusive. To explore possible mechanisms underlying retinal degeneration caused by mutations in regulators of the splicing machinery, we induced mutations in Drosophila Prp31, the orthologue of human PRPF31, mutations in which are associated with RP11. Flies heterozygous mutant for Prp31 are viable and develop normal eyes and retina. However, photoreceptors degenerate under light stress, thus resembling the human disease phenotype. Degeneration is associated with increased accumulation of the visual pigment rhodopsin 1 and increased mRNA levels of twinfilin, a gene associated with rhodopsin trafficking. Reducing rhodopsin levels by raising animals in a carotenoid-free medium not only attenuates rhodopsin accumulation, but also retinal degeneration. Given a similar importance of proper rhodopsin trafficking for photoreceptor homeostasis in human, results obtained in flies presented here will also contribute to further unravel molecular mechanisms underlying the human disease.This paper has an associated First Person interview with the co-first authors of the article.


Sign in / Sign up

Export Citation Format

Share Document