scholarly journals An Integrated Approach to Studying Rare Neuromuscular Diseases Using Animal and Human Cell-Based Models

Author(s):  
Timothy J. Hines ◽  
Cathleen Lutz ◽  
Stephen A. Murray ◽  
Robert W. Burgess

As sequencing technology improves, the identification of new disease-associated genes and new alleles of known genes is rapidly increasing our understanding of the genetic underpinnings of rare diseases, including neuromuscular diseases. However, precisely because these disorders are rare and often heterogeneous, they are difficult to study in patient populations. In parallel, our ability to engineer the genomes of model organisms, such as mice or rats, has gotten increasingly efficient through techniques such as CRISPR/Cas9 genome editing, allowing the creation of precision human disease models. Such in vivo model systems provide an efficient means for exploring disease mechanisms and identifying therapeutic strategies. Furthermore, animal models provide a platform for preclinical studies to test the efficacy of those strategies. Determining whether the same mechanisms are involved in the human disease and confirming relevant parameters for treatment ideally involves a human experimental system. One system currently being used is induced pluripotent stem cells (iPSCs), which can then be differentiated into the relevant cell type(s) for in vitro confirmation of disease mechanisms and variables such as target engagement. Here we provide a demonstration of these approaches using the example of tRNA-synthetase-associated inherited peripheral neuropathies, rare forms of Charcot-Marie-Tooth disease (CMT). Mouse models have led to a better understanding of both the genetic and cellular mechanisms underlying the disease. To determine if the mechanisms are similar in human cells, we will use genetically engineered iPSC-based models. This will allow comparisons of different CMT-associated GARS alleles in the same genetic background, reducing the variability found between patient samples and simplifying the availability of cell-based models for a rare disease. The necessity of integrating mouse and human models, strategies for accomplishing this integration, and the challenges of doing it at scale are discussed using recently published work detailing the cellular mechanisms underlying GARS-associated CMT as a framework.

2003 ◽  
Vol 358 (1432) ◽  
pp. 787-795 ◽  
Author(s):  
Susumu Tonegawa ◽  
Kazu Nakazawa ◽  
Matthew A. Wilson

Our primary research interest is to understand the molecular and cellular mechanisms on neuronal circuitry underlying the acquisition, consolidation and retrieval of hippocampus-dependent memory in rodents. We study these problems by producing genetically engineered (i.e. spatially targeted and/or temporally restricted) mice and analysing these mice by multifaceted methods including molecular and cellular biology, in vitro and in vivo physiology and behavioural studies. We attempt to identify deficits at each of the multiple levels of complexity in specific brain areas or cell types and deduce those deficits that underlie specific learning or memory. We will review our recent studies on the acquisition, consolidation and recall of memories that have been conducted with mouse strains in which genetic manipulations were targeted to specific types of cells in the hippocampus or forebrain of young adult mice.


2019 ◽  
Author(s):  
Thomas Naert ◽  
Tom Van Nieuwenhuysen ◽  
Suzan Demuynck ◽  
Sven de Grande ◽  
Joanna Przybyl ◽  
...  

AbstractIdentification of true dependencies in cancer is pivotal to the elucidation of novel therapeutic strategies to increase prospects for cancer patients. Unfortunately,in vivoidentification of genetic dependencies has long relied on expensive and time-consuming breeding of genetically engineered animal models. Recently,in vitroCRISPR/Cas9 screens provided a new method for rapid and genome-wide identification of genetic dependencies. Nevertheless, genetic dependencies would ideally be identified usingin vivocancer models initiated by clinically relevant oncogenic driver or tumor suppressor insults. Here, we report a new methodology calledCRISPR/Cas9-mediatedNegativeSelectionIdentification of geneticDependencies (CRISPR-NSID) that allowsin vivoelucidation of cancer cell vulnerabilities in genetic cancer models. The methodology hinges on the fact that for a genetic dependency there is an incapability for recovering tumors carrying biallelic frameshift mutations in this gene. We demonstrate how integrating experimentally determined, orin silicopredicted, probabilities of frameshift editing for any given gRNA can be employed to ascertain negative selection pressure on inactivation of a genetic dependency during tumorigenesis. As a proof-of-principle, we use CRISPR-NSID to identifyezh2andcreb3l1as genetic dependencies in desmoid tumors (desmoid-type fibromatosis) occurring in aXenopus tropicaliscancer model driven byapcmutations. Bridging CRISPR-NSID to a clinically unmet need, we further demonstrate the promise for EZH2 inhibition as a new therapeutic strategy for desmoid tumors. This study establishes a new methodology for rapid identification of genetic dependencies in monoclonal disorders with wide adaptability to other model systems and organisms.


Development ◽  
1999 ◽  
Vol 126 (14) ◽  
pp. 3035-3046 ◽  
Author(s):  
D.J. Montell

Cell migrations are found throughout the animal kingdom and are among the most dramatic and complex of cellular behaviors. Historically, the mechanics of cell migration have been studied primarily in vitro, where cells can be readily viewed and manipulated. However, genetic approaches in relatively simple model organisms are yielding additional insights into the molecular mechanisms underlying cell movements and their regulation during development. This review will focus on these simple model systems where we understand some of the signaling and receptor molecules that stimulate and guide cell movements. The chemotactic guidance factor encoded by the Caenorhabditis elegans unc-6 locus, whose mammalian homolog is Netrin, is perhaps the best known of the cell migration guidance factors. In addition, receptor tyrosine kinases (RTKs), and FGF receptors in particular, have emerged as key mediators of cell migration in vivo, confirming the importance of molecules that were initially identified and studied in cell culture. Somewhat surprisingly, screens for mutations that affect primordial germ cell migration in Drosophila have revealed that enzymes involved in lipid metabolism play a role in guiding cell migration in vivo, possibly by producing and/or degrading lipid chemoattractants or chemorepellents. Cell adhesion molecules, such as integrins, have been extensively characterized with respect to their contribution to cell migration in vitro and genetic evidence now supports a role for these receptors in certain instances in vivo as well. The role for non-muscle myosin in cell motility was controversial, but has now been demonstrated genetically, at least in some cell types. Currently the best characterized link between membrane receptor signaling and regulation of the actin cytoskeleton is that provided by the Rho family of small GTPases. Members of this family are clearly essential for the migrations of some cells; however, key questions remain concerning how chemoattractant and chemorepellent signals are integrated within the cell and transduced to the cytoskeleton to produce directed cell migration. New types of genetic screens promise to fill in some of these gaps in the near future.


2018 ◽  
Vol 115 (3) ◽  
pp. 619-624 ◽  
Author(s):  
Aditya M. Kunjapur ◽  
Devon A. Stork ◽  
Erkin Kuru ◽  
Oscar Vargas-Rodriguez ◽  
Matthieu Landon ◽  
...  

Incorporation of nonstandard amino acids (nsAAs) leads to chemical diversification of proteins, which is an important tool for the investigation and engineering of biological processes. However, the aminoacyl-tRNA synthetases crucial for this process are polyspecific in regard to nsAAs and standard amino acids. Here, we develop a quality control system called “posttranslational proofreading” to more accurately and rapidly evaluate nsAA incorporation. We achieve this proofreading by hijacking a natural pathway of protein degradation known as the N-end rule, which regulates the lifespan of a protein based on its amino-terminal residue. We find that proteins containing certain desired N-terminal nsAAs have much longer half-lives compared with those proteins containing undesired amino acids. We use the posttranslational proofreading system to further evolve a Methanocaldococcus jannaschii tyrosyl-tRNA synthetase (TyrRS) variant and a tRNATyr species for improved specificity of the nsAA biphenylalanine in vitro and in vivo. Our newly evolved biphenylalanine incorporation machinery enhances the biocontainment and growth of genetically engineered Escherichia coli strains that depend on biphenylalanine incorporation. Finally, we show that our posttranslational proofreading system can be designed for incorporation of other nsAAs by rational engineering of the ClpS protein, which mediates the N-end rule. Taken together, our posttranslational proofreading system for in vivo protein sequence verification presents an alternative paradigm for molecular recognition of amino acids and is a major advance in our ability to accurately expand the genetic code.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Ma ◽  
Jing Sun ◽  
Bo Li ◽  
Yang Feng ◽  
Yao Sun ◽  
...  

AbstractThe development of biomedical glues is an important, yet challenging task as seemingly mutually exclusive properties need to be combined in one material, i.e. strong adhesion and adaption to remodeling processes in healing tissue. Here, we report a biocompatible and biodegradable protein-based adhesive with high adhesion strengths. The maximum strength reaches 16.5 ± 2.2 MPa on hard substrates, which is comparable to that of commercial cyanoacrylate superglue and higher than other protein-based adhesives by at least one order of magnitude. Moreover, the strong adhesion on soft tissues qualifies the adhesive as biomedical glue outperforming some commercial products. Robust mechanical properties are realized without covalent bond formation during the adhesion process. A complex consisting of cationic supercharged polypeptides and anionic aromatic surfactants with lysine to surfactant molar ratio of 1:0.9 is driven by multiple supramolecular interactions enabling such strong adhesion. We demonstrate the glue’s robust performance in vitro and in vivo for cosmetic and hemostasis applications and accelerated wound healing by comparison to surgical wound closures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasaman Shamshirgaran ◽  
Anna Jonebring ◽  
Anna Svensson ◽  
Isabelle Leefa ◽  
Mohammad Bohlooly-Y ◽  
...  

AbstractRecent advances in induced pluripotent stem cells (iPSCs), genome editing technologies and 3D organoid model systems highlight opportunities to develop new in vitro human disease models to serve drug discovery programs. An ideal disease model would accurately recapitulate the relevant disease phenotype and provide a scalable platform for drug and genetic screening studies. Kidney organoids offer a high cellular complexity that may provide greater insights than conventional single-cell type cell culture models. However, genetic manipulation of the kidney organoids requires prior generation of genetically modified clonal lines, which is a time and labor consuming procedure. Here, we present a methodology for direct differentiation of the CRISPR-targeted cell pools, using a doxycycline-inducible Cas9 expressing hiPSC line for high efficiency editing to eliminate the laborious clonal line generation steps. We demonstrate the versatile use of genetically engineered kidney organoids by targeting the autosomal dominant polycystic kidney disease (ADPKD) genes: PKD1 and PKD2. Direct differentiation of the respective knockout pool populations into kidney organoids resulted in the formation of cyst-like structures in the tubular compartment. Our findings demonstrated that we can achieve > 80% editing efficiency in the iPSC pool population which resulted in a reliable 3D organoid model of ADPKD. The described methodology may provide a platform for rapid target validation in the context of disease modeling.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2545
Author(s):  
Ya-Hui Chen ◽  
Po-Hui Wang ◽  
Pei-Ni Chen ◽  
Shun-Fa Yang ◽  
Yi-Hsuan Hsiao

Cervical cancer is one of the major gynecologic malignancies worldwide. Treatment options include chemotherapy, surgical resection, radiotherapy, or a combination of these treatments; however, relapse and recurrence may occur, and the outcome may not be favorable. Metformin is an established, safe, well-tolerated drug used in the treatment of type 2 diabetes; it can be safely combined with other antidiabetic agents. Diabetes, possibly associated with an increased site-specific cancer risk, may relate to the progression or initiation of specific types of cancer. The potential effects of metformin in terms of cancer prevention and therapy have been widely studied, and a number of studies have indicated its potential role in cancer treatment. The most frequently proposed mechanism underlying the diabetes–cancer association is insulin resistance, which leads to secondary hyperinsulinemia; furthermore, insulin may exert mitogenic effects through the insulin-like growth factor 1 (IGF-1) receptor, and hyperglycemia may worsen carcinogenesis through the induction of oxidative stress. Evidence has suggested clinical benefits of metformin in the treatment of gynecologic cancers. Combining current anticancer drugs with metformin may increase their efficacy and diminish adverse drug reactions. Accumulating evidence is indicating that metformin exerts anticancer effects alone or in combination with other agents in cervical cancer in vitro and in vivo. Metformin might thus serve as an adjunct therapeutic agent for cervical cancer. Here, we reviewed the potential anticancer effects of metformin against cervical cancer and discussed possible underlying mechanisms.


CHEST Journal ◽  
1985 ◽  
Vol 87 (5) ◽  
pp. 162S-164S ◽  
Author(s):  
Stephen P. Peters ◽  
Robert M. Naclerio ◽  
Alkis Togias ◽  
Robert P. Schleimer ◽  
Donald W. MacGlashan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diana P. Pires ◽  
Rodrigo Monteiro ◽  
Dalila Mil-Homens ◽  
Arsénio Fialho ◽  
Timothy K. Lu ◽  
...  

AbstractIn the era where antibiotic resistance is considered one of the major worldwide concerns, bacteriophages have emerged as a promising therapeutic approach to deal with this problem. Genetically engineered bacteriophages can enable enhanced anti-bacterial functionalities, but require cloning additional genes into the phage genomes, which might be challenging due to the DNA encapsulation capacity of a phage. To tackle this issue, we designed and assembled for the first time synthetic phages with smaller genomes by knocking out up to 48% of the genes encoding hypothetical proteins from the genome of the newly isolated Pseudomonas aeruginosa phage vB_PaeP_PE3. The antibacterial efficacy of the wild-type and the synthetic phages was assessed in vitro as well as in vivo using a Galleria mellonella infection model. Overall, both in vitro and in vivo studies revealed that the knock-outs made in phage genome do not impair the antibacterial properties of the synthetic phages, indicating that this could be a good strategy to clear space from phage genomes in order to enable the introduction of other genes of interest that can potentiate the future treatment of P. aeruginosa infections.


Sign in / Sign up

Export Citation Format

Share Document