scholarly journals The Extracellular Matrix in Ischemic and Nonischemic Heart Failure

2019 ◽  
Vol 125 (1) ◽  
pp. 117-146 ◽  
Author(s):  
Nikolaos G. Frangogiannis

The ECM (extracellular matrix) network plays a crucial role in cardiac homeostasis, not only by providing structural support, but also by facilitating force transmission, and by transducing key signals to cardiomyocytes, vascular cells, and interstitial cells. Changes in the profile and biochemistry of the ECM may be critically implicated in the pathogenesis of both heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. The patterns of molecular and biochemical ECM alterations in failing hearts are dependent on the type of underlying injury. Pressure overload triggers early activation of a matrix-synthetic program in cardiac fibroblasts, inducing myofibroblast conversion, and stimulating synthesis of both structural and matricellular ECM proteins. Expansion of the cardiac ECM may increase myocardial stiffness promoting diastolic dysfunction. Cardiomyocytes, vascular cells and immune cells, activated through mechanosensitive pathways or neurohumoral mediators may play a critical role in fibroblast activation through secretion of cytokines and growth factors. Sustained pressure overload leads to dilative remodeling and systolic dysfunction that may be mediated by changes in the interstitial protease/antiprotease balance. On the other hand, ischemic injury causes dynamic changes in the cardiac ECM that contribute to regulation of inflammation and repair and may mediate adverse cardiac remodeling. In other pathophysiologic conditions, such as volume overload, diabetes mellitus, and obesity, the cell biological effectors mediating ECM remodeling are poorly understood and the molecular links between the primary insult and the changes in the matrix environment are unknown. This review article discusses the role of ECM macromolecules in heart failure, focusing on both structural ECM proteins (such as fibrillar and nonfibrillar collagens), and specialized injury-associated matrix macromolecules (such as fibronectin and matricellular proteins). Understanding the role of the ECM in heart failure may identify therapeutic targets to reduce geometric remodeling, to attenuate cardiomyocyte dysfunction, and even to promote myocardial regeneration.

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Jorge E Massare ◽  
R. Haris Naseem ◽  
Jeff M Berry ◽  
Farhana Rob ◽  
Joseph A Hill

Background: Sudden cardiac death due to ventricular tachyarrhythmia (VT) accounts for a large number of deaths in patients with heart failure. Several cellular events which occur during pathological remodeling of the failing ventricle are implicated in the genesis of VT, including action potential prolongation, dysregulation of intercellular coupling, and fibrosis. Interestingly, transgenic mice over-expressing constitutively active PKD (caPKD) develop severe heart failure without interstitial fibrosis, an otherwise prominent feature of the disease. The goal here was to define the role of interstitial fibrosis in the proarrhythmic phenotype of failing myocardium. Methods and Results: We performed echocardiographic, electrocardiographic, and in vivo electrophysiologic studies in 8 –10 week old caPKD mice (n=12). Similar studies were performed in mice with load-induced heart failure induced by surgical pressure overload (sTAB, n=10), a model of heart failure with prominent interstitial fibrosis. caPKD and sTAB mice showed similar degrees of ventricular dilation (LV systolic dimension caPKD 2.4±0.8 mm vs 3.0±0.9 sTAB, p=0.18) and severe systolic dysfunction (% fractional shortening caPKD 25±11 vs 28±11 sTAB, p=0.62). Yet, caPKD mice showed minimal interstitial fibrosis, comparable to unoperated controls. With the exception of ventricular refractory period, which was higher in caPKD (48±11 msec vs 36±7 TAB and 40±8 WT, p<0.05), other electrocardiographic and electrophysiologic variables were similar among the 3 groups (p=NS), including heart rate, QT duration, and mean VT threshold. As expected, VT (≥3beats) was readily inducible by programmed stimulation in sTAB mice (7/10). By contrast, VT was less inducible in caPKD mice (4/12; p=0.1 vs TAB and <0.05 vs WT), and uninducible in unoperated controls (0/12). VT was polymorphic in both models, but episodes of VT were both slower (VT cycle length caPKD 58±4.0 msec vs 48±1 sTAB, p=0.016) and longer in caPKD mice (caPKD 1.8±0.7 sec vs 0.47±0.3 sTAB, p=0.038). Conclusion: Interstitial fibrosis contributes to the inducibility, maintenance, and rate of VT in heart failure. These findings highlight the importance of anti-remodeling therapies known to target fibrosis in heart disease.


2021 ◽  
Author(s):  
Kristen LeBar ◽  
Zhijie Wang

The extracellular matrix (ECM) forms a mesh surrounding tissue, made up of fibrous and non-fibrous proteins that contribute to the cellular function, mechanical properties of the tissue and physiological function of the organ. The cardiac ECM remodels in response to mechanical alterations (e.g., pressure overload, volume overload) or injuries (e.g., myocardial infarction, bacterial infection), which further leads to mechanical and functional changes of the heart. Collagen, the most prevalent ECM protein in the body, contributes significantly to the mechanical behavior of myocardium during disease progression. Alterations in collagen fiber morphology and alignment, isoform, and cross-linking occur during the progression of various cardiac diseases. Acute or compensatory remodeling of cardiac ECM maintains normal cardiac function. However, chronic or decompensatory remodeling eventually results in heart failure, and the exact mechanism of transition into maladaptation remains unclear. This review aims to summarize the primary role of collagen accumulation (fibrosis) in heart failure progression, with a focus on its effects on myocardial tissue mechanical properties and cellular and organ functions.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Vaibhav B Patel ◽  
Pavel Zhabyeyev ◽  
Brent A McLean ◽  
Dong Fan ◽  
Ratnadeep Basu ◽  
...  

Background: Biomechanical stress and cytoskeletal remodeling are key determinants in pressure overload-induced heart failure. Class Ia phosphoinositide 3-kinases (PI3Ks) mediate a variety of cellular activities, in response to agonist binding to cell-surface receptors, by generating the phosphatidylinositol (3,4,5)-trisphosphate (PIP 3 ) phosphoinositide lipid. Gelsolin is a Ca 2+ - and phosphoinositide-regulated actin filament severing and capping protein that is upregulated in failing human hearts and animal models of heart failure. Hypothesis: We hypothesize that PI3Kα regulates cytoskeletal remodeling through PIP 3 -mediated regulation of gelsolin. In addition, loss of gelsolin could attenuate the adverse cytoskeletal remodeling and result in increased resistance to the development of heart failure in response to pressure-overload. Methods and Results: Loss of p110α kinase activity, in two different transgenic models (PI3Kα dominant-negative (PI3KαDN) and cardiomyocyte-specific PI3Kα-null), resulted in dilated cardiomyopathy and markedly worsened cardiac dysfunction in response to transverse aortic constriction-induced pressure overload. Increased levels of mechanosensor proteins along with decreased F/G-actin ratio exhibited an uncoupling between cardiac mechanotransduction and cytoskeletal remodeling in p110α-null mice. Gelsolin activity was markedly increased in the p110α-null hearts in response to pressure-overload, whereas loss of gelsolin in PI3KαDN/gelsolin-null double mutant mice prevented the adverse cytoskeletal remodeling and preserved the cardiac function. In a murine model of chronic heart failure, loss of gelsolin prevented the pressure overload-induced cardiac dysfunction, fibrosis, and impaired cardiomyocyte contractility resulting in increased survival. Loss of gelsolin also mitigated the biomechanical stress-induced adverse cytoskeletal remodeling, via the attenuation of actin severing activity. Conclusions: We have identified a novel role of gelsolin as a mediator of adverse cytoskeletal remodeling leading to heart failure, where PI3Kα is a key regulator of gelsolin activity.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 485
Author(s):  
Kyle B. LaPenna ◽  
David J. Polhemus ◽  
Jake E. Doiron ◽  
Hunter A. Hidalgo ◽  
Zhen Li ◽  
...  

Hydrogen sulfide (H2S) is an endogenous, gaseous signaling molecule that plays a critical role in cardiac and vascular biology. H2S regulates vascular tone and oxidant defenses and exerts cytoprotective effects in the heart and circulation. Recent studies indicate that H2S modulates various components of metabolic syndrome, including obesity and glucose metabolism. This review will discuss studies exhibiting H2S -derived cardioprotective signaling in heart failure with reduced ejection fraction (HFrEF). We will also discuss the role of H2S in metabolic syndrome and heart failure with preserved ejection fraction (HFpEF).


2010 ◽  
Vol 6 (2) ◽  
pp. 33 ◽  
Author(s):  
Christopher R deFilippi ◽  
G Michael Felker ◽  
◽  

For many with heart failure, including the elderly and those with a preserved ejection fraction, both risk stratification and treatment are challenging. For these large populations and others there is increasing recognition of the role of cardiac fibrosis in the pathophysiology of heart failure. Galectin-3 is a novel biomarker of fibrosis and cardiac remodelling that represents an intriguing link between inflammation and fibrosis. In this article we review the biology of galectin-3, recent clinical research and its application in the management of heart failure patients.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
E Galli ◽  
Y Bouali ◽  
C Laurin ◽  
A Gallard ◽  
A Hubert ◽  
...  

Abstract Background The non-invasive assessment of myocardial work (MW) by pressure-strain loops analysis (PSL) is a relative new tool for the evaluation of myocardial performance. Sacubitril/Valsartan is a treatment for heart failure with reduced ejection fraction (HFrEF) which has a spectacular effect on the reduction of cardiovascular events (MACEs). Purposes of this study were to evaluate 1) the short and medium term effect of Sacubitril/Valsartan treatment on MW parameters; 2) the prognostic value of MW in this specific group of patients. Methods 79 patients with HFrEF (mean age: 66±12 years; LV ejection fraction: 28±9%) were prospectively included in the study and treated with Sacubitril/Valsartan. Echocardiographic examination was performed at baseline, and after 6- and 12-month of therapy with Sacubitril/Valsartan. Results Sacubitril/Valsartan significantly increased global myocardial constructive work (CW) (1023±449 vs 1424±484 mmHg%, p&lt;0.0001) and myocardial work efficiency (WE) [87 (78–90) vs 90 (86–95), p&lt;0.0001]. During FU (2.6±0.9 years), MACEs occurred in 13 (16%) patients. After correction for LV size, LVEF and WE, CW was the only predictor of MACEs (Table 1). A CW&lt;910 mmHg (AUC=0.81, p&lt;0.0001, Figure 1A) identified patients at particularly increase risk of MACEs [HR 11.09 (1.45–98.94), p=0.002, log-rank test p&lt;0.0001] (Figure 1 B). Conclusions In patients with HFrEF who receive a comprehensive background beta-blocker and mineral-corticoid receptor antagonist therapy, Sacubitril/Valsartan induces a significant improvement of myocardial CW and WE. In this population, the estimation of CW before the initiation of Sacubitril/Valsartan therapy allows the prediction of MACEs. Funding Acknowledgement Type of funding source: None


Sign in / Sign up

Export Citation Format

Share Document