scholarly journals Interleukin-10 Deficiency Alters Endothelial Progenitor Cell–Derived Exosome Reparative Effect on Myocardial Repair via Integrin-Linked Kinase Enrichment

2020 ◽  
Vol 126 (3) ◽  
pp. 315-329 ◽  
Author(s):  
Yujia Yue ◽  
Chunlin Wang ◽  
Cindy Benedict ◽  
Grace Huang ◽  
May Truongcao ◽  
...  

Rationale: Systemic inflammation compromises the reparative properties of endothelial progenitor cell (EPC) and their exosomes on myocardial repair, although the underlying mechanism of loss of function of exosomes from inflamed EPCs is still obscure. Objective: To determine the mechanisms of IL-10 (interleukin-10) deficient-EPC–derived exosome dysfunction in myocardial repair and to investigate if modification of specific exosome cargo can rescue reparative activity. Methods and Results: Using IL-10 knockout mice mimicking systemic inflammation condition, we compared therapeutic effect and protein cargo of exosomes isolated from wild-type EPC and IL-10 knockout EPC. In a mouse model of myocardial infarction (MI), wild-type EPC-derived exosome treatment significantly improved left ventricle cardiac function, inhibited cell apoptosis, reduced MI scar size, and promoted post-MI neovascularization, whereas IL-10 knockout EPC-derived exosome treatment showed diminished and opposite effects. Mass spectrometry analysis revealed wild-type EPC-derived exosome and IL-10 knockout EPC-derived exosome contain different protein expression pattern. Among differentially expressed proteins, ILK (integrin-linked kinase) was highly enriched in both IL-10 knockout EPC-derived exosome as well as TNFα (tumor necrosis factor-α)-treated mouse cardiac endothelial cell–derived exosomes (TNFα inflamed mouse cardiac endothelial cell–derived exosome). ILK-enriched exosomes activated NF-κB (nuclear factor κB) pathway and NF-κB–dependent gene transcription in recipient endothelial cells and this effect was partly attenuated through ILK knockdown in exosomes. Intriguingly, ILK knockdown in IL-10 knockout EPC-derived exosome significantly rescued their reparative dysfunction in myocardial repair, improved left ventricle cardiac function, reduced MI scar size, and enhanced post-MI neovascularization in MI mouse model. Conclusions: IL-10 deficiency/inflammation alters EPC-derived exosome function, content and therapeutic effect on myocardial repair by upregulating ILK enrichment in exosomes, and ILK-mediated activation of NF-κB pathway in recipient cells, whereas ILK knockdown in exosomes attenuates NF-κB activation and reduces inflammatory response. Our study provides new understanding of how inflammation may alter stem cell-exosome–mediated cardiac repair and identifies ILK as a target kinase for improving progenitor cell exosome-based cardiac therapies.

2012 ◽  
Vol 97 (11) ◽  
pp. 4182-4192 ◽  
Author(s):  
Sunao Tanaka ◽  
Takayuki Ueno ◽  
Fumiaki Sato ◽  
Yoshitsugu Chigusa ◽  
Nobuko Kawaguchi-Sakita ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Eiichiro Nagata ◽  
Haruchika Masuda ◽  
Taira Nakayama ◽  
Shizuka Netsu ◽  
Hiroko Yuzawa ◽  
...  

AbstractMoyamoya disease (MMD) is well known to be caused by insufficient cerebral vascular formation. However, the essential pathogenesis has not yet been identified. Using our recently developed technique of generating vasculogenic and anti-inflammatory cultures, we investigated endothelial progenitor cell (EPC) expansion and differentiation under the cytokine milieu generated by the peripheral blood mononuclear cells (PBMNCs) of the operated and non-operated MMD patients. EPC colony forming assay of the cultured PBMNCs disclosed the decline of the definitive EPC colony numbers in the both MMD patients. The level of interleukin-10 (IL-10) was lower in secretory cytokines from the cultured PBMNCs of MMD patients than that in that of controls using a cytometric bead array. The addition of human recombinant IL-10 to PBMNCs cultured from MMD patients restored the EPC colony forming potential of MMD PBMNCs. Following phorbol myristate acetate stimulation of the cultured PBMNCs, flow cytometry revealed a decrease in intracellular IL-10 storage in the main cell populations of the PBMNCs cultured from MMD patients relative to those cultured from controls. The present data provide the expected mechanism of vascular malformation in MMD pathogenesis originated from the insufficient production of IL-10 secreting cells from PBMNCs fostering EPC expansion and differentiation.


2007 ◽  
Vol 204 (13) ◽  
pp. 3257-3269 ◽  
Author(s):  
Hyun-Jai Cho ◽  
Namho Lee ◽  
Ji Yoon Lee ◽  
Yong Jin Choi ◽  
Masaaki Ii ◽  
...  

Noncellular differentiation effects have emerged as important mechanisms mediating therapeutic effects of stem or progenitor cell transplantation. Here, we investigated the expression patterns and sources of humoral factors and their regional and systemic biological effects after bone marrow (BM)-derived endothelial progenitor cell (EPC) transplantation into ischemic myocardium. Although most of the transplanted EPCs disappeared within a week, up-regulation of multiple humoral factors was sustained for longer than two weeks, which correlated well with the recovery of cardiac function. To determine the source of the humoral factors, we injected human EPCs into immunodeficient mice. Whereas the expression of human EPC (donor)-derived cytokines rapidly decreased to a nondetectable level within a week, up-regulation of mouse (recipient)-derived cytokines, including factors that could mobilize BM cells, was sustained. Histologically, we observed higher capillary density, a higher proliferation of myocardial cells, a lower cardiomyocyte apoptosis, and reduced infarct size. Furthermore, after EPC transplantation, BM-derived stem or progenitor cells were increased in the peripheral circulation and incorporated into the site of neovascularization and myocardial repair. These data indicate that myocardial EPC transplantation induces humoral effects, which are sustained by host tissues and play a crucial role in repairing myocardial injury.


2021 ◽  
Vol 4 (1) ◽  
pp. 7-15
Author(s):  
Shahidee Zainal Abidin ◽  
Han-Chung Lee ◽  
Syahril Abdullah ◽  
Norshariza Nordin ◽  
Pike-See Cheah ◽  
...  

MicroRNA-3099 (miR-3099) plays a crucial role in regulating neuronal differentiation and development of the central nervous system (CNS). The miR-3099 is a pro-neuronal miRNA that promotes neural stem/progenitor cell (NSPC) differentiation into neuronal lineage by suppressing astrogliogenesis. Down syndrome (DS) brain exhibited increased astrogliogenesis and reduced neuronal cell density. The involvement of miR-3099 in the neurodevelopment of DS has not been investigated and potentially responsible for the neurogenic-to-gliogenic shift phenomenon observed in DS brain. To investigate the role of miR-3099 during DS brain development, neural/progenitor cell proliferation and differentiation, we profiled miR-3099 expression level in the Ts1Cje, a mouse model for DS. We analysed the Ts1Cje whole brain at embryonic day (E) 10.5, E14.5 and P1.5, proliferating neurospheres and differentiating neurospheres at 3, 9 and 15 days in vitro (DIV). Expression of miR-3099 in both the developing mouse brain and the differentiating neurosphere was not significantly different between Ts1Cje and wild type controls. In contrast, the expression level of miR-3099 was significantly higher (p<0.05) in proliferating NSPC derived from the Ts1Cje compared to wild-type. Further molecular profiling of NPSC and glial cell markers indicated that the expression of Sox2 (p<0.01) and Gfap (p<0.05) were significantly downregulated in Ts1Cje neurospheres as compared to that of wild type, respectively. While there were no significant differences in Tuj1 and Nestin expression levels between the Ts1Cje and wild type neurospheres, their expression levels were ~3-fold upregulated and ~2.6 downregulated Ts1Cje group, respectively. The findings suggest that dysregulation of miR-3099 affects NSPC lineage commitment as indicated by altered postmitotic neuronal cell markers. Further molecular characterisation and gene expression profiling of other neuronal and glial markers will help refine the analysis of gene-gene interactions underlying the neuropathologies of DS.


2017 ◽  
Vol 23 (21-22) ◽  
pp. 1241-1250 ◽  
Author(s):  
Yujia Yue ◽  
Venkata Naga Srikanth Garikipati ◽  
Suresh Kumar Verma ◽  
David A. Goukassian ◽  
Raj Kishore

2017 ◽  
Vol 105 (6) ◽  
pp. 1712-1724 ◽  
Author(s):  
Dany J. Munoz-Pinto ◽  
Josh D. Erndt-Marino ◽  
Silvia M. Becerra-Bayona ◽  
Viviana R. Guiza-Arguello ◽  
Satyavrata Samavedi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document