scholarly journals Epidermal Growth Factor-Like Domain 7 Suppresses Intercellular Adhesion Molecule 1 Expression in Response to Hypoxia/Reoxygenation Injury in Human Coronary Artery Endothelial Cells

Circulation ◽  
2010 ◽  
Vol 122 (11_suppl_1) ◽  
pp. S156-S161 ◽  
Author(s):  
M. V. Badiwala ◽  
L. C. Tumiati ◽  
J. M. Joseph ◽  
R. Sheshgiri ◽  
H. J. Ross ◽  
...  
Circulation ◽  
1998 ◽  
Vol 98 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Flordeliza S. Villanueva ◽  
Ron J. Jankowski ◽  
Sasha Klibanov ◽  
Maris L. Pina ◽  
Sean M. Alber ◽  
...  

2000 ◽  
Vol 279 (5) ◽  
pp. C1414-C1424 ◽  
Author(s):  
Jo C. Tsai ◽  
Lixin Liu ◽  
Jiazhen Guan ◽  
William C. Aird

The early growth response (Egr)-1 transcription factor serves to couple changes in the extracellular environment to alterations in gene expression. An understanding of the mechanisms that underlie Egr-1 gene regulation should provide important insights into how environmental signals are transduced by endothelial cells. The aim of the present study was to determine whether epidermal growth factor (EGF) induces Egr-1 expression in endothelial cells. In ECV304 cells, Egr-1 mRNA and protein levels were increased in response to EGF. In stable transfection assays, the 1,200-bp promoter of the mouse Egr-1 gene contained information for EGF response via a protein kinase C-independent, mitogen-activated protein kinase-dependent pathway. The endogenous Egr-1 gene was similarly responsive to EGF in primary human umbilical vein endothelial cells, human coronary artery endothelial cells, and rat fat pad endothelial cells, but not in bovine aortic endothelial cells, calf pulmonary artery endothelial cells, or PY-4-1 endothelial cells. Together, these results suggest that the Egr-1 gene is responsive to EGF in a subset of endothelial cells.


Author(s):  
Yong Zhang ◽  
Hongxia Cao

C-reactive protein (CRP) is an important predictor of cardiovascular events and plays a role in vascular inflammation and vessel damage. The aim of this study was to investigate the effect of pentameric CRP (pCRP) and monomeric CRP (mCRP) on the production of atherosclerosis-related factors in cultured human coronary artery endothelial cells (HCAECs). HCAECs were treated with pCRP, mCRP, p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580, or transfected with p38 MAPK siRNA. Western blotting was performed to detect the expression of vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), intercellular adhesion molecule-2 (ICAM-2), and vascular cell adhesion molecule 1 (VCAM-1). Proliferation, damage, and apoptosis of HCAECs were examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), lactate dehydrogenase (LDH), and flow cytometry, respectively. mCRP suppressed VEGF and COX-2 expression and enhanced ICAM-2 and VCAM-1 expression in HCAECs, in both dose-dependent and time-dependent manner. Except at 100 μg/ml concentration and 20-hour or 24-hour incubation, pCRP had no apparent effects. mCRP but not pCRP induced HCAEC injury and phosphorylation of p38 MAPK, and the inhibitior SB203580 reversed the effects of mCRP. mCRP promotes injury and apoptosis of HCAECs through a p38 MAPK-dependent mechanism, which provides a new therapy for the injury of HCAECs in atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document