Abstract 23: Foxd1+ Stromal Cells, the Required Progenitors for Kidney Vascular Development

Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Eugene E Lin ◽  
Roberto A Gomez ◽  
Maria-Luisa S Sequeira-Lopez

The mechanisms underlying the establishment, assembly and maintenance of the renal blood vessels are poorly understood. We have previously suggested using detailed lineage tracing that renal stromal cells, characterized by their early and transient expression of the transcription factor Foxd1 , give rise to the entirety of the mural cell layer of the renal arterial tree and mesangial cells. Mural cells as defined here exclude endothelial cells, which we identified as having a separate precursor, the renal hemangioblast. To define whether Foxd1 cells are the required essential progenitor or whether their role as such could be assumed by other cell types, we used the cre-lox system to generate mice expressing diphtheria toxin subunit A in Foxd1+ cells ( Foxd1-DTA mice ) which resulted in animals with selective ablation of Foxd1+ cells. Kidneys from Foxd1-DTA embryos had a significantly reduced complement of arterial mural cells, lacking smooth muscle cells, perivascular fibroblasts, renin cells and mesangial cells. Interestingly, the few vessels that remained were also abnormal: they originated underneath the kidney capsule and elongated towards the center of the kidney rather than radiating outward from the center of the kidney. In addition, ablation of Foxd1 cells resulted in significantly delayed nephrogenesis and reduction in glomerular number. In conjunction with our previous data showing a similar phenotype upon global deletion of the Foxd1 ,gene, this illustrates the central role of Foxd1 and the cells that express it during early development. We conclude that Foxd1 stromal cells are the required progenitors for the establishment of the mural cells of the kidney arterioles and (via Foxd1 expression) for the proper origin and orientation of the kidney vessels.

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Eugene Lin ◽  
Maria Luisa S Sequeira Lopez ◽  
Roberto A Gomez

Proper assembly of the renal vasculature is essential for post-natal life, and alterations to the renal vasculature are at the root of many types of cardiovascular disease. However, the mechanisms underlying the establishment, assembly and maintenance of the renal blood vessels are poorly understood. We have identified a population of renal stromal cells (marked by their expression of the transcription factor Foxd1) that differentiate to form the mural cells of the kidney arterial tree (excluding endothelial cells) and the glomerular mesangium. We previously demonstrated that RBP-J, the final transcriptional effector of the Notch signaling pathway, controls the phenotype of renin cells which are also derived from the Foxd1 lineage. We therefore hypothesized that RBP-J regulates the differentiation of stromal cells into the mural cells of the kidney arterioles. To answer this question, we deleted RBP-J in the metanephric stromal precursor cells, and found that mutant mice displayed striking kidney abnormalities in early life. Staining for vascular markers showed a significant decrease in the number of arteries and arterioles. Vessel walls were thinner due to a decrease in both the size and number of smooth muscle cells. We also noted a near absence of renin cells, supporting our earlier findings regarding the key role of RBP-J in establishing the differentiated renin cell endowment. These findings were accompanied by delayed nephrogenesis and other renal abnormalities including tubular dilation. In addition, mutant kidneys lacked Foxd1-lineage cells within the glomeruli, resulting in a depletion of mesangial cells and glomerular aneurysms. Thus, we conclude that RBP-J in Foxd1+ stromal cells plays a key role in the development of the kidney vasculature, and regulates the fate of cells that compose the arterial tree and the glomerular tuft.


2021 ◽  
Author(s):  
Arndt F Siekmann ◽  
Elvin Vincent Leonard ◽  
Ricardo Figueroa ◽  
Jeroen Bussmann ◽  
Julio D Amigo ◽  
...  

Vascular networks are comprised of endothelial cells and mural cells, which include pericytes and smooth muscle cells. It is well established that new endothelial cells are derived from pre-existing ones during the angiogenic phase of blood vessel growth. By contrast, mural cell ontogeny is less clear with an ongoing debate whether mural cells possess mesenchymal stem cell properties. To elucidate the mechanisms controlling mural cell recruitment during development and tissue regeneration, we studied the formation of zebrafish caudal fin arteries. Mural cells showed morphological heterogeneity: cells colonizing arteries proximal to the body wrapped around them, while those in more distal regions extended protrusions along the proximo-distal vascular axis. Despite these differences, both cell populations expressed platelet-derived growth factor receptor beta (Pdgfrb) and the smooth muscle cell marker myosin heavy chain 11a (Myh11a). Loss of Pdgfrb signalling during development or tissue regeneration resulted in a substantial decrease in mural cells at the vascular front, while those proximal to the body were less affected. Using lineage tracing, we demonstrate that precursor cells located in periarterial regions of the caudal fin and expressing Pgdfrb can give rise to mural cells, while in regeneration newly formed mural cells were not derived from pre-existing ones. Together, our findings reveal conserved roles for pdgfrb signalling in development and regeneration, while at the same time illustrating a limited capacity of mural cells to self-renew or contribute to other cell types during tissue regeneration.


2015 ◽  
Vol 308 (2) ◽  
pp. R138-R149 ◽  
Author(s):  
Maria Luisa S. Sequeira-Lopez ◽  
Eugene E. Lin ◽  
Minghong Li ◽  
Yan Hu ◽  
Curt D. Sigmund ◽  
...  

The development of the kidney arterioles is poorly understood. Mature arterioles contain several functionally and morphologically distinct cell types, including smooth muscle, endothelial, and juxtaglomerular cells, and they are surrounded by interconnected pericytes, fibroblasts, and other interstitial cells. We have shown that the embryonic kidney possesses all of the necessary precursors for the development of the renal arterial tree, and those precursors assemble in situ to form the kidney arterioles. However, the identity of those precursors was unclear. Within the embryonic kidney, several putative progenitors marked by the expression of either the winged-forkhead transcription factor 1 (Foxd1+ progenitor), the aspartyl-protease renin (Ren+ progenitor), and/or hemangioblasts (Scl+ progenitor) are likely to differentiate and endow most of the cells of the renal arterial tree. However, the lineage relationships and the role of these distinct progenitors in renal vascular morphogenesis have not been delineated. We, therefore, designed a series of experiments to ascertain the hierarchical lineage relationships between Foxd1+ and Ren+ progenitors and the role of these two precursors in the morphogenesis and patterning of the renal arterial tree. Results show that 1) Foxd1+ cells are the precursors for all the mural cells (renin cells, smooth muscle cells, perivascular fibroblasts, and pericytes) of the renal arterial tree and glomerular mesangium, and 2) Foxd1 per se directs the origin, number, orientation, and cellular composition of the renal vessels.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Linda Alex ◽  
Ya Su ◽  
Nikolaos G Frangogiannis

Repair of the infarcted heart is dependent on inflammation-driven activation of myofibroblasts (MFs) and subsequent formation of a scar. Though pericytes have been implicated in injury-associated fibroblast activation in several organs, their potential role in cardiac repair and fibrosis has not been studied. We hypothesized that myocardial infarction (MI) may induce pericyte activation, contributing to repair through pericyte to MF conversion, secretion of fibrogenic mediators, or regulation of angiogenesis. In order to test the hypothesis, we generated pericyte/fibroblast reporter mice (NG2 DsRed ;PDGFRα GFP ). In normal myocardium, NG2 labeled peri-endothelial mural cells that coexpressed PDGFRβ, whereas PDGFRα identified interstitial cells with fibroblast characteristics. Pericytes and fibroblasts had distinct transcriptomic profiles: NG2+/PDGFRα- pericytes expressed αSMA and low amounts of extracellular matrix (ECM) genes, whereas PDGFRα+/NG2- fibroblasts synthesized collagens. Pericyte rarefaction was noted in the necrotic core 3 days after non-reperfused MI. 3-7 days post MI, expansion of the NG2+ population in the infarct zone was associated with emergence of non-mural NG2+/αSMA+ cells with MF characteristics. FACS-sorted NG2+/PDGFRα- cells from 7-day infarcts expressed higher levels of ColIα2 (7.2±1.0-fold) and ColIIIα1 (8.9±1.14-fold), when compared to NG2+/PDGFRα- cells from normal hearts. NG2+ cells had high mRNA levels of integrins α1, αV, β1, and β5, and of MMP14, reflecting an activated migratory phenotype. To examine whether expression of ECM genes by infarct pericytes is due to fibroblast conversion, we did lineage tracing studies using NG2CreER TM ;Rosa tdTomato mice bred with the PDGFRα GFP line for reliable fibroblast identification. 7 days post MI, 5.7%±1.04 of PDGFRα+ fibroblasts were derived from NG2+ cells. Also, αSMA staining showed that 10.49%±2.73 of infarct MFs were derived from NG2+ lineage. The majority of mural cells wrapping neovessels were derived from NG2+ cells, suggesting a role for resident pericytes in infarct angiogenesis. In conclusion, upon MI, pericytes become activated and contribute to repair by undergoing conversion to a subset of myofibroblasts and by coating infarct neovessels.


2019 ◽  
Vol 7 ◽  
Author(s):  
Peng Hu ◽  
Qinxin Yang ◽  
Qi Wang ◽  
Chenshuo Shi ◽  
Dali Wang ◽  
...  

Abstact Cutaneous regeneration at the wound site involves several intricate and dynamic processes which require a series of coordinated interactions implicating various cell types, growth factors, extracellular matrix (ECM), nerves, and blood vessels. Mesenchymal stromal cells (MSCs) take part in all the skin wound healing stages playing active and beneficial roles in animal models and humans. Exosomes, which are among the key products MSCs release, mimic the effects of parental MSCs. They can shuttle various effector proteins, messenger RNA (mRNA) and microRNAs (miRNAs) to modulate the activity of recipient cells, playing important roles in wound healing. Moreover, using exosomes avoids many risks associated with cell transplantation. Therefore, as a novel type of cell-free therapy, MSC-exosome -mediated administration may be safer and more efficient than whole cell. In this review, we provide a comprehensive understanding of the latest studies and observations on the role of MSC-exosome therapy in wound healing and cutaneous regeneration. In addition, we address the hypothesis of MSCs microenvironment extracellular vesicles (MSCs-MEVs) or MSCs microenvironment exosomes (MSCs-MExos) that need to take stock of and solved urgently in the related research about MSC-exosomes therapeutic applications. This review can inspire investigators to explore new research directions of MSC-exosome therapy in cutaneous repair and regeneration.


1991 ◽  
Vol 3 (3) ◽  
pp. 321 ◽  
Author(s):  
RA Cherny ◽  
LA Salamonsen ◽  
JK Findlay

Immunocytochemistry with monoclonal antibodies to the oestrogen receptor (ER) was used to localize ERs in sections of endometrium obtained from cycling and pregnant Corriedale ewes. Representative tissue from Days 4, 10, 14, 15, 16 and 17 of the cycle (Day 0 = onset of oestrus) and Day 15 of pregnancy was used. ER localization was also examined in tissue obtained from ovariectomized (ovex) ewes with and without subcutaneous implants containing oestrogen, progesterone, or oestrogen and progesterone. ER distribution was examined in caruncular endometrium and intercaruncular endometrium. Staining intensity varied according to cell type, stage of the cycle, steroid treatment and pregnancy. No staining was observed in endothelial cells. In all cases, ER was localized within the nuclei of positive cells. Generally, ER levels were high on Day 4 and declined to negligible values by Day 10 (corresponding to peak progesterone values) except in the deep stroma of caruncular endometrium. Positive staining reappeared in stromal cells of caruncles on Day 13 and in the luminal epithelium of intercaruncular tissue on Day 14. Peak intensity was reached on Day 15 for caruncular tissue and Day 16 for intercaruncular tissue. Ovariectomy did not cause an overall reduction in ER levels, whereas treatment with oestrogen and progesterone had variable effects depending on cell type. Progesterone did not suppress overall ER. In Day 15 pregnant tissue, ER was undetectable in all compartments except deep stroma of caruncles, indicating that factors other than progesterone, perhaps embryonic in origin, were responsible. The observation that individual cell types display differential sensitivities to oestrogen and progesterone as regards their expression of ER is consistent with the role of cell-cell interactions as modulators of cellular response to steroids through the oestrous cycle and in pregnancy.


2019 ◽  
Vol 116 (28) ◽  
pp. 14254-14259 ◽  
Author(s):  
Zhihong Chen ◽  
James L. Ross ◽  
Dolores Hambardzumyan

Characterized by a dismal survival rate and limited response to therapy, glioblastoma (GBM) remains one of the most aggressive human malignancies. Recent studies of the role of tumor-associated macrophages (TAMs) in the progression of GBMs have demonstrated that TAMs are significant contributors to tumor growth, invasion, and therapeutic resistance. TAMs, which include brain-resident microglia and circulating bone marrow derived-monocytes (BMDMs), are typically grouped together in histopathological and molecular analyses due to the lack of reliable markers of distinction. To develop more effective therapies aimed at specific TAM populations, we must first understand how these cells differ both morphologically and behaviorally. Furthermore, we must develop a deeper understanding of the mechanisms encouraging their infiltration and how these mechanisms can be therapeutically exploited. In this study, we combined immunocompetent lineage tracing mouse models of GBM with high-resolution open-skull 2-photon microscopy to investigate the phenotypical and functional characteristics of TAMs. We demonstrate that TAMs are composed of 2 morphologically distinct cell types that have differential migratory propensities. We show that BMDMs are smaller, minimally branched cells that are highly migratory compared with microglia, which are larger, highly branched stationary cells. In addition, 2 populations of monocytic macrophages were observed that differed in terms of CX3CR1 expression and migratory capacity. Finally, we demonstrate the efficacy of anti-vascular endothelial growth factor A blockade for prohibiting TAM infiltration, especially against BMDMs. Taken together, our data clearly define characteristics of individual TAM populations and suggest that combination therapy with antivascular and antichemotaxis therapy may be an attractive option for treating these tumors.


2005 ◽  
Vol 289 (1) ◽  
pp. G2-G7 ◽  
Author(s):  
D. W. Powell ◽  
P. A. Adegboyega ◽  
J. F. Di Mari ◽  
R. C. Mifflin

Intestinal myofibroblasts are α-smooth muscle actin-positive stromal cells that exist as a syncytium with fibroblasts and mural cells in the lamina propria of the gut. Through expression and secretion of cytokines, chemokines, growth factors, prostaglandins, and basal lamina/extracellular matrix molecules, as well as expression of adhesion molecules and receptors for many of the same soluble factors and matrix, myofibroblasts mediate information flow between the epithelium and the mesenchymal elements of the lamina propria. With the use of these factors and receptors, they play a fundamental role in intestinal organogenesis and in the repair of wounding or disease. Intestinal neoplasms enlist and conscript myofibroblast factors and matrix molecules to promote neoplastic growth, carcinoma invasion, and distant metastases.


2017 ◽  
Author(s):  
Roger I. Grant ◽  
David A. Hartmann ◽  
Robert G. Underly ◽  
Andrée-Anne Berthiaume ◽  
Narayan R. Bhat ◽  
...  

ABSTRACTSmooth muscle cells and pericytes, together called mural cells, coordinate many distinct vascular functions. Smooth muscle cells are ring-shaped and cover arterioles with circumferential processes, whereas pericytes extend thin processes that run longitudinally along capillaries. In between these canonical mural cell types are cells with mixed phenotype of both smooth muscle cells and pericytes. Recent studies suggest that these transitional cells are critical for controlling blood flow to the capillary bed during health and disease, but there remains confusion on how to identify them and where they are located in the brain microvasculature. To address this issue, we measured the morphology, vascular territory, and α-smooth muscle actin content of structurally diverse mural cells in adult mouse cortex. We first imaged intact 3-D vascular networks to establish the locations of major gradations in mural cell appearance as arterioles branched into capillaries. We then imaged individual mural cells occupying the regions within these gradations. This revealed two transitional cells that were often similar in appearance, but with sharply contrasting levels of α-smooth muscle actin. Our findings highlight the diversity of mural cell morphologies in brain microvasculature, and provide guidance for identification and categorization of mural cell types.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Vidya Nagalakshmi Kusma Harinathan ◽  
Minghong Li ◽  
Ariel R Gomez ◽  
Maria Luisa S Sequeira-Lopez

Our previous study on a partial unilateral ureteral obstruction (pUUO) model in neonatal mice showed that the release of obstruction halts the progression of kidney damage and leads to a remarkable repair of the kidney with improvement in renal blood flow. In the current study, we aim to understand the role of mural cells of the renin lineage during kidney damage and repair in the neonatal pUUO model. Our results show a marked increase in renin-positive areas in kidneys obstructed for 3W (Sham-3W: 0.70±0.10%, n=3; Obstructed-3W: 1.82±0.43%, n=3). However, relief of obstruction at 1W restored the renin-positive areas to sham levels (Post-release-2W: 0.70±0.09%; n=3). Lineage tracing using Ren1 d Cre;mTmG mice revealed a significant increase in GFP+ cells in the obstructed kidneys, with a decrease post-release. To understand further the dynamic changes in cells of renin lineage due to obstruction, we ablated the renin cells using DTA (Diphtheria toxin subunit A). We crossed the DTA fl/fl mice with Ren1 d -DTA het ;Ren1 d Cre;mTmG mice and performed pUUO in the resultant pups with DTA in the renin cells (DTA+). DTA+ animals showed thinning of the renal vasculature and a 90% reduction in renin-positive area compared to controls [Control: 0.70±0.10% (n=3); DTA+: 0.06±0.03% (n=3)]. In addition, there was no significant increase in the renin-positive area post-obstruction [Sham-3W: 0.06±0.04% (n=3); Obstructed-3W: 0.12±0.05% (n=4); Post-release-2W: 0.08±0.03% (n=4)]. These results indicate that ablation of renin cells abolished the obstruction-mediated surge in the renin expression. However, measurement of interstitial collagen positive area indicated that despite the absence of renin cells, the fibrotic damage due to obstruction recovered remarkably post-release [Collagen positive area: Sham-3W: 3.38±0.67% (n=3) Obstructed-3W: 62.98±31.50% (n=3); Post-release-2W: 10.93±5.46% (n=4)]. Similarly, vascular damage induced by persistent obstruction and recovery following the relief of obstruction was similar between the DTA+ and non-DTA animals. Our results imply that though the renin and renin lineage cells increase in obstructed kidneys, ablation of renin cells does not affect the regeneration capacity of kidneys following the relief of obstruction.


Sign in / Sign up

Export Citation Format

Share Document