Abstract 265: CITED4 Induces Physiologic Hypertrophy and Improves Cardiac Remodeling After Ischemic Injury

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Vassilios J Bezzerides ◽  
Colin Platt ◽  
Kaavya Paruchuri ◽  
Loren Oh ◽  
Chunyang Xiao ◽  
...  

Cardiac hypertrophy is an adaptive response to increased hemodynamic stresses, which can be either physiologic, as with exercise, or pathologic, as with valvular heart disease. Recent data suggest that physiologic hypertrophy secondary to exercise may be mediated by the transcription factor CEBPβ and the p300-interacting protein CITED4. We sought to investigate the cardiovascular effects of CITED4 expression in vivo. Using a cardiac-specific and inducible transgenic mouse (Tg) model, we determined the effects of CITED4 expression on cardiac parameters including heart weight, cell size, cardiac function and gene expression. Expression of CITED4 for 3 weeks induced increases in heart weight (22% in HW/TL, p < 0.01) and cardiomyocyte (CM) size (24.5% in cell area, p < 0.001) with normal systolic function and without evidence of fibrosis. Gene profiling demonstrated increased expression of cardiac troponin, a favorable αMHC/βMHC ratio and a reduction in BNP consistent with physiologic hypertrophy. Genome-wide expression profiling of neonatal rat ventricular myocytes (NRVMs) over-expressing CITED4 demonstrated the activation of a unique set of genes including BCL2, ATP12a, Efemp1, Ifi204 and Tcf19. To further examine the potential beneficial role of CITED4, we induced ischemia by transient occlusion of the left anterior descending (LAD) coronary (30 min) followed by reperfusion for 24 hours, 6 days or 4 weeks. At 24 hrs after ischemia-reperfusion injury (IRI), neither cardiac dysfunction on echo nor infarct sizes were different between CITED4 Tg and controls. However, CITED4 Tgs showed substantial recovery of cardiac function at 4 weeks (FS: CITED4 Tg 51%, Control 34%, p < 0.01) and a 3.4-fold reduction in fibrosis (p < 0.005). Analysis of possible cellular responses responsible for the functional recovery demonstrated enhanced autophagic flux with reduced accumulation of LC3II (down 71%, p<0.05) and p62 (down 54%, p<0.005). Further examination of the involved signaling pathway revealed direct activation of mTORC1 and its effectors consistent with a growth phenotype. We conclude that CITED4 expression is sufficient to induce physiologic cardiac hypertrophy and improves cardiac remodeling after ischemic injury likely through activation of mTORC1.

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Carolin Lerchenmüller ◽  
Charles P Rabolli ◽  
Dongjian Hu ◽  
Vassilios J Bezzerides ◽  
Colin Platt ◽  
...  

Introduction: Cardiac hypertrophy is an adaptive response to increased physiologic or pathologic hemodynamic stress. Previous work from our laboratory suggested that the CEBPβ/ CITED4 pathway plays an important role in exercise-induced cardiac hypertrophy. Consistent with this model, our laboratory recently found that inducible cardiac expression of CITED4 in adult mice increases in heart weight and cardiomyocyte size with normal systolic function and a gene expression profile consistent with physiologic growth. After ischemia-reperfusion injury (IRI), induced CITED4 mice show significant functional recovery and evidence for decreased adverse remodeling. Hypothesis: Here, we assessed the hypothesis that CITED4 gene therapy delivered in a clinically relevant time frame after IRI in a mouse model, will also lead to improved systolic function and favorable cardiac remodeling. Methods and Results: Cardiomyocyte-specific CITED4 gene delivery via intravenous AAV9 (CITED4 and GFP control) injections in young wild type (WT) mice led to a steady 4-fold increase in cardiac CITED4 expression. After four weeks, CITED4 treated animals developed physiologic cardiac hypertrophy with increased heart weights (heart weight to tibia length controls 6.54±0.17g/mm vs. CITED4 7.31±0.12g/mm), as well as increased left ventricular mass index and wall thickness with unchanged systolic function evaluated by echocardiography. CITED4 gene therapy in the setting of IRI, delivered 20min. after reperfusion, promoted decreased maladaptive remodeling with improved systolic function (%FS controls 37.5±3.6 vs. C4KO 47.9±1.6), a smaller scar size (% fibrotic area controls 9.1±1.9 vs. C4KO 2.4±0.5) and a favorable gene expression profile eight weeks after IRI. After injury, CITED4 gene therapy led to a 6-fold overexpression already after one week post-IRI, responsible for less apoptosis, fibrosis and inflammation when compared to control mice. Conclusion: Taken together, our data identify CITED4 as a regulator of physiologic cardiac growth that protects against adverse remodeling after ischemic injury in a clinically relevant therapeutic intervention after IRI. CITED4 may represent a novel therapeutic target to mitigate adverse ventricular remodeling.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Christopher J Traynham ◽  
Ancai Yuan ◽  
Erhe Gao ◽  
Walter Koch

In the next 35 years, the global population of individuals above 60 years of age will double to approximately 2 billion. In the aged population, cardiovascular diseases are known to occur at a higher prevalence ultimately leading to increased mortality. G protein-coupled receptors (GPCRs) have been identified as vital regulators of cardiac function. GPCR kinases (GRKs) are important in cardiac GPCR regulation through desensitization of these receptors. GRK2 is highly expressed in the heart, and has been widely characterized due to its upregulation in heart failure. Studies from our lab have shown that elevated GRK2 levels in ischemia-reperfusion (I/R) injury result in a pro-death phenotype. Interestingly, cardio-protection can be inferred via S-nitrosylation of GRK2 at cysteine 340. Further, we have generated a knock-in GRK2 340S mouse, in which cysteine 340 was mutated to block dynamic GRK2 S-nitrosylation. GRK2 340S mice are more susceptible to I/R injury. Given that GRK2 340S mice are more susceptible to oxidative stress, and there is a nitroso-redox imbalance in senescence, it is possible that these mice are more likely to exhibit decreased cardiac performance as they age. Therefore, we hypothesize that with age GRK2 340S knockin mice will develop an overall worsened cardiac phenotype compared to control wild-type (WT) mice. To test this hypothesis, 340S and WT mice were aged for a year, and cardiac function was evaluated via echocardiography. Aged 340S mice exhibited significantly decreased ejection fraction and fraction shortening relative to aged WT controls. Prior to tissue harvesting, in-vivo hemodynamics was conducted via Millar catheterization. At baseline, aged 340S mice exhibited increased systolic blood pressure compared to aged WT mice. At the conclusion of this protocol, mice were sacrificed and heart weight (HW), body weight (BW), and tibia length (TL) measured to evaluate cardiac hypertrophy. Aged 340S mice exhibited significantly increased HW/BW and HW/TL ratios, indicative of cardiac hypertrophy, relative to aged WT controls. Taken together, these data suggest that with age, loss of the cardio protection inferred by S-nitrosylation of GRK2 at leads to decreased cardiac performance, and an overall worsened cardiac phenotype.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Marcus Tjeerdsma ◽  
Levi Froke ◽  
Jessica Freeling ◽  
Scott Pattison

Introduction: Macroautophagy is a process of bulk protein degradation. Our prior work showed that Atg7 expression is sufficient to induce autophagic flux in vitro and in vivo . When Atg7 was co-expressed with CryAB R120G in the heart, cardiac hypertrophy was blunted in heart weight/body weight ratios and fetal gene expression markers. To determine if Atg7 expression is sufficient to limit hypertrophic growth in another model, we tested the effects of Atg7 overexpression with phenylephrine-induced hypertrophy both in vitro and in vivo . Hypothesis: Atg7 will blunt the hypertrophic effects of phenylephrine. Methods: Rat neonatal cardiomyocytes were infected with adenoviruses expressing either LacZ or Atg7 and treated with phenylephrine to induce cardiomyocytes hypertrophy. Osmotic pumps were surgically implanted into control mice and mice with cardiac-specific expression of Atg7 to infuse phenylephrine (PE) or vehicle (saline) for four weeks. Results: PE treatment significantly increased neonatal cardiomyocyte areas in LacZ-expressing cells, while Atg7-expressing cardiomyocytes showed no growth. In mice, all genotypes responded to PE treatment with significantly increased heart weight/body weight ratios and increased fiber size. However, Atg7-expressing hearts differed significantly from control hearts in normalized heart mass following PE delivery. Vehicle treated Atg7-expressing hearts had 17% smaller myofiber cross-sectional areas than those from control genotypes and had a reduced hypertrophic response to PE, relative to controls. Echocardiography showed that Atg7-expressing hearts had significantly elevated cardiac function (% fractional shortening) prior to and throughout the experiment over control hearts (33% vs. 29%). PE significantly increased fractional shortening) from 29% to 36% in control hearts, but failed to significantly elevate cardiac function in Atg7-expressing hearts further (33% vs 35%). Additional assays are underway to understand the Atg7-dependent adaptations to PE. Conclusion: Atg7 expression yields modestly smaller hearts with enhanced cardiac function which may protect them from hypertrophic stresses like phenylephrine.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Carolin Lerchenmueller ◽  
Vassilios J Bezzeridis ◽  
Colin Platt ◽  
Chunyang Xiao ◽  
Anthony Rosenzweig

Cardiac hypertrophy is an adaptive response to increased physiologic or pathologic hemodynamic stress. Previous work from our laboratory suggested that the CEBPβ/ CITED4 pathway plays an important role in exercise-induced cardiac hypertrophy. Consistent with this model, our laboratory recently found that inducible cardiac expression of CITED4 in adult mice increases heart weight and cardiomyocyte size with normal systolic function and a gene expression profile consistent with physiologic growth. After ischemia-reperfusion injury (IRI), induced CITED4 mice show significant functional recovery and evidence for decreased adverse remodeling. Next, we sought to investigate the role of CITED4 in the setting of physiologic (forced swimming exercise) and pathological (transverse aortic constriction, TAC) cardiac hypertrophy. Cardiomyocyte-specific CITED4 knockout mice (C4KO) undergoing a three week swimming exercise protocol showed modestly but significantly reduced systolic function when compared to control animals (%FS controls 55.4±1.09 vs. C4KO 51.75±0.86; p=0.025). C4KO mice exposed to TAC demonstrated a more rapid and severe decline in cardiac function after TAC (at 6 weeks post surgery, %FS controls 41.55±2.06 vs. C4KO 32.51±2.67; p=0.024). Both in vitro and in vivo we demonstrate that CITED4 is necessary and sufficient for activation of mTOR signaling. Of note, mTORC1 inhibition by rapamycin abrogated the beneficial effects of CITED4 expression after IRI. Taken together, our data identify CITED4 as a novel regulator of mTOR signaling. Moreover they demonstrate that CITED4 is sufficient for physiologic growth and to protect against adverse remodeling after ischemic injury. CITED4 is also necessary for adaptive responses to pathological biomechanical stress and may represent a novel therapeutic target to mitigate adverse ventricular remodeling.


2021 ◽  
Vol 12 ◽  
Author(s):  
Evelyne J. Demkes ◽  
Steven Wenker ◽  
Max J. M. Silvis ◽  
Martijn M. J. van Nieuwburg ◽  
M. Joyce Visser ◽  
...  

Background: Ischemia-reperfusion and cardiac remodeling is associated with cardiomyocyte death, excessive fibrosis formation, and functional decline, eventually resulting in heart failure (HF). Glucagon-like peptide (GLP)-1 agonists are reported to reduce apoptosis and myocardial infarct size after ischemia-reperfusion. Moreover, mineralocorticoid receptor antagonists (MRAs) have been described to reduce reactive fibrosis and improve cardiac function. Here, we investigated whether combined treatment with GLP-1R agonist exenatide and MRA potassium canrenoate could minimize cardiac injury and limit HF progression in animal models of chronic HF.Methods and Results: Forty female Topigs Norsvin pigs were subjected to 150 min balloon occlusion of the left anterior descending artery (LAD). Prior to reperfusion, pigs were randomly assigned to placebo or combination therapy (either low dose or high dose). Treatment was applied for two consecutive days or for 8 weeks with a continued high dose via a tunneled intravenous catheter. Using 2,3,5-Triphenyltetrazolium chloride (TTC) staining we observed that combination therapy did not affect the scar size after 8 weeks. In line, left ventricular volume and function assessed by three-dimensional (3D) echocardiography (baseline, 7 days and 8 weeks), and cardiac magnetic resonance imaging (CMR, 8 weeks) did not differ between experimental groups. In addition, 36 C57Bl/6JRj mice underwent permanent LAD-occlusion and were treated with either placebo or combination therapy prior to reperfusion, for two consecutive days via intravenous injection, followed by continued treatment via placement of osmotic mini-pumps for 28 days. Global cardiac function, assessed by 3D echocardiography performed at baseline, 7, 14, and 28 days, did not differ between treatment groups. Also, no differences were observed in cardiac hypertrophy, assessed by heart weight/bodyweight and heart weight/tibia length ratio.Conclusion: In the current study, combined treatment with GLP-1R agonist exenatide and MR antagonist potassium canrenoate did not show beneficial effects on cardiac remodeling nor resulted in functional improvement in a small and large animal chronic HF model.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Christopher J Traynham ◽  
Alessandro Cannavo ◽  
Jonathan Hullmann ◽  
Jessica L Gold ◽  
Walter J Koch

Cardiac function is dynamically regulated by various G protein-coupled receptors (GPCRs). GPCR kinases (GRKs) are important in cardiac GPCR regulation through phosphorylation and desensitization of these receptors. GRK2 and GRK5 are the predominant GRKs in the heart, and the most widely characterized as they are both up-regulated in the failing heart. Prior studies from our Lab have determined that GRK5 plays a crucial role in pathological cardiac hypertrophy. Another type of hypertrophy termed, “physiological hypertrophy” occurs with exercise training and is defined as an enlargement in cardiac myocyte size leading to favorable cardiac adaptations. At present, it is unclear if GRK5 is a regulator of physiological hypertrophy in addition to its role in maladaptive hypertrophy. We hypothesize that GRK5 will not regulate physiological hypertrophy such that mice with cardiac-specific overexpression of GRK5 (TgGRK5) will yield a similar post-exercise cardiac physiological hypertrophic response as that of control wild-type (WT) mice. To test this hypothesis, TgGRK5 and WT mice were exposed to a 21 day high-intensity swimming exercise protocol. For each line, sham mice, which did not swim served as appropriate controls. At the conclusion of this protocol, mice were sacrificed and heart weight (HW), body weight (BW), and tibia length (TL) measured. TgGRK5 and WT mice both exhibited a characteristic 10-15% increase in HW/BW and HW/TL ratios, which are standard measures of cardiac hypertrophy. In addition, hearts were sectioned and H&E stained to evaluate myocyte size. Both TgGRK5 and WT mice exhibited a significant increase in myocyte size. Cardiac function was evaluated via echocardiography both prior to and after exercise training, and no changes were observed between TgGRK5 and WT mice after training. These data were re-affirmed in H9C2 cells and neonatal rat ventricular myocytes overexpressing either GFP or GRK5, which exhibited similar increases in cell size and AKT phosphorylation after IGF-1 treatment, a physiological hypertrophy stimulus. Taken together, these data suggest that physiological hypertrophy is similar in both control and TgGRK5 mice, confirming that GRK5 is solely a regulator of pathological cardiac hypertrophy.


2005 ◽  
Vol 288 (2) ◽  
pp. H632-H637 ◽  
Author(s):  
Richard H. Kennedy ◽  
Martin Hauer-Jensen ◽  
Jacob Joseph

Several studies have examined the role of mast cells in the myocardial response to injury such as that caused by hypertension and ischemia-reperfusion. However, little is known about the influence of mast cells on normal myocardial structure and function. The present experiments examined cardiac function in Langendorff-perfused hearts isolated from 6- and 9-mo-old male mast cell-deficient ( Ws/ Ws) and mast cell-competent rats. A fluid-filled balloon catheter was used to measure left ventricular diastolic and systolic function at increasing preload volumes. At 6 mo of age, mast cell-deficient rats showed a slight cardiac hypertrophy (as monitored by heart weight and heart weight-to-body weight ratio) but no significant change in maximum observed systolic or diastolic function. In contrast, at 9 mo of age, the mast cell-deficient group showed no signs of hypertrophy but displayed a diastolic dysfunction characterized by decreased compliance without a significant decline in maximum observed basal −dP/d tmax. There were no significant differences in maximum observed values for measures of systolic function (developed pressure and +dP/d tmax). In summary, the results of this study in adult rats suggest that mast cells influence cardiac function in the absence of injury and that observed differences between mast cell-competent and -deficient animals vary with age. Thus it is important to consider these “physiological” actions and resulting changes in function when studying effects of insult in mast cell-deficient models.


Pharmacology ◽  
2021 ◽  
Vol 106 (3-4) ◽  
pp. 189-201
Author(s):  
Shigang Qiao ◽  
Wen-jie Zhao ◽  
Huan-qiu Li ◽  
Gui-zhen Ao ◽  
Jian-zhong An ◽  
...  

Aim: It has been reported that necrostatin-1 (Nec-1) is a specific necroptosis inhibitor that could attenuate programmed cell death induced by myocardial ischemia/reperfusion (I/R) injury. This study aimed to observe the effect and mechanism of novel Nec-1 analog (Z)-5-(3,5-dimethoxybenzyl)-2-imine-1-methylimidazolin-4-1 (DIMO) on myocardial I/R injury. Methods: Male SD rats underwent I/R injury with or without different doses of DIMO (1, 2, or 4 mg/kg) treatment. Isolated neonatal rat cardiomyocytes were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) treatment with or without DIMO (0.1, 1, 10, or 100 μM). Myocardial infarction was measured by TTC staining. Cardiomyocyte injury was assessed by lactate dehydrogenase assay (LDH) and flow cytometry. Receptor-interacting protein 1 kinase (RIP1K) and autophagic markers were detected by co-immunoprecipitation and Western blotting analysis. Molecular docking of DIMO into the ATP binding site of RIP1K was performed using GLIDE. Results: DIMO at doses of 1 or 2 mg/kg improved myocardial infarct size. However, the DIMO 4 mg/kg dose was ineffective. DIMO at the dose of 0.1 μM decreased LDH leakage and the ratio of PI-positive cells followed by OGD/R treatment. I/R or OGD/R increased RIP1K expression and in its interaction with RIP3K, as well as impaired myocardial autophagic flux evidenced by an increase in LC3-II/I ratio, upregulated P62 and Beclin-1, and activated cathepsin B and L. In contrast, DIMO treatment reduced myocardial cell death and reversed the above mentioned changes in RIP1K and autophagic flux caused by I/R and OGD/R. DIMO binds to RIP1K and inhibits RIP1K expression in a homology modeling and ligand docking. Conclusion: DIMO exerts cardioprotection against I/R- or OGD/R-induced injury, and its mechanisms may be associated with the reduction in RIP1K activation and restoration impaired autophagic flux.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Jing Yang ◽  
Geoffrey W CHO ◽  
Lihao He ◽  
Yuxin Chu ◽  
Jin He ◽  
...  

Background and Hypothesis: Reperfusion injury accounts for ~50% of myocardial infarct size, and clinically efficacious therapies are lacking. Histone deacetylase (HDAC) inhibition enhances cardiomyocyte autophagic activity, mitochondria biogenesis, and blunts ischemia/reperfusion (I/R) injury when given at the time of reperfusion. However, as HDAC inhibition has pleiotropic effects, we will test whether augmentation of autophagic flux using a specific autophagy-inducing peptide, Tat-Beclin (TB), is cardioprotective. Methods: 8-12-week-old, wild-type, C57BL6 mice were randomized into three groups: vehicle control, Tat-Scrambled (TS) peptide, or Tat-Beclin (TB) peptide. Each group was subjected to I/R surgery (45min ischemia, 24h reperfusion). Infarct size, systolic function, and mitochondrial dynamics were assayed. Cultured neonatal rat ventricular myocytes (NRVMs) were used to test for cardiomyocyte specificity. Conditional cardiomyocyte ATG7 knockout (ATG7 KO) mice and ATG7 knockdown by siRNA in NRVMs were used to evaluate the role of autophagy. Results: TB treatment at reperfusion reduced infarct size by 20.1±6.3% (n=23, p<0.02) and improved systolic function. Increased autophagic flux and reduced reactive oxygen species (ROS) were observed in the infarct border zone. The cardioprotective effects of TB were abolished in ATG7 KO mice. TB increased mtDNA content in the border zone significantly. In NRVMs subjected to I/R, TB reduced cell death by 41±6% (n=12, p<0.001), decreased ROS, and increased mtDNA content significantly by ~50%. Moreover, TB promoted expression of PGC1α (a major driver of mitochondrial biogenesis) both in the infarct border zone and NRVMs subjected to I/R by ~40%, and increased levels of mitochondrial dynamics gene transcripts Drp1, Fis1, and MFN1 / 2. Conversely, ATG7 knockdown in NRVMs and cardiac ATG7 KO abolished the beneficial effects of TB on mitochondria DNA content. Conclusions: Autophagic flux is an essential process to mitigate myocardial reperfusion injury acting, at least in part, by inducing PGC1α-mediated mitochondrial biogenesis. Augmentation of autophagic flux may emerge as a viable clinical therapy to reduce reperfusion injury in myocardial infarction.


2018 ◽  
Vol 115 (1) ◽  
pp. 71-82 ◽  
Author(s):  
Andrea Grund ◽  
Malgorzata Szaroszyk ◽  
Janina K Döppner ◽  
Mona Malek Mohammadi ◽  
Badder Kattih ◽  
...  

Abstract Aims Chronic heart failure is becoming increasingly prevalent and is still associated with a high mortality rate. Myocardial hypertrophy and fibrosis drive cardiac remodelling and heart failure, but they are not sufficiently inhibited by current treatment strategies. Furthermore, despite increasing knowledge on cardiomyocyte intracellular signalling proteins inducing pathological hypertrophy, therapeutic approaches to target these molecules are currently unavailable. In this study, we aimed to establish and test a therapeutic tool to counteract the 22 kDa calcium and integrin binding protein (CIB) 1, which we have previously identified as nodal regulator of pathological cardiac hypertrophy and as activator of the maladaptive calcineurin/NFAT axis. Methods and results Among three different sequences, we selected a shRNA construct (shCIB1) to specifically down-regulate CIB1 by 50% upon adenoviral overexpression in neonatal rat cardiomyocytes (NRCM), and upon overexpression by an adeno-associated-virus (AAV) 9 vector in mouse hearts. Overexpression of shCIB1 in NRCM markedly reduced cellular growth, improved contractility of bioartificial cardiac tissue and reduced calcineurin/NFAT activation in response to hypertrophic stimulation. In mice, administration of AAV-shCIB1 strongly ameliorated eccentric cardiac hypertrophy and cardiac dysfunction during 2 weeks of pressure overload by transverse aortic constriction (TAC). Ultrastructural and molecular analyses revealed markedly reduced myocardial fibrosis, inhibition of hypertrophy associated gene expression and calcineurin/NFAT as well as ERK MAP kinase activation after TAC in AAV-shCIB1 vs. AAV-shControl treated mice. During long-term exposure to pressure overload for 10 weeks, AAV-shCIB1 treatment maintained its anti-hypertrophic and anti-fibrotic effects, but cardiac function was no longer improved vs. AAV-shControl treatment, most likely resulting from a reduction in myocardial angiogenesis upon downregulation of CIB1. Conclusions Inhibition of CIB1 by a shRNA-mediated gene therapy potently inhibits pathological cardiac hypertrophy and fibrosis during pressure overload. While cardiac function is initially improved by shCIB1, this cannot be kept up during persisting overload.


Sign in / Sign up

Export Citation Format

Share Document