Abstract 32: The Role of Cyclin A2 in Adult Human Cardiomyocyte Plasticity

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Amaresh Ranjan ◽  
Sangeetha Vadakke Madathil ◽  
Hina Chaudhry

The adult mammalian heart is known to have a very low abundance of progenitor cells which can take part in active cycling and regeneration after damage. Cardiomyocytes exit the cell cycle soon after birth coincident with the silencing of cyclin A2 (CCNA2). In our previous studies, we demonstrated that viral delivery of Ccna2 induces cardiac regeneration in infarcted hearts of small and large animal models. However, the molecular mechanism whereby Ccna2 induces cardiac regeneration and increase in cardiac function deserves further study. To explore further, we isolated adult mouse cardiomyocytes and induced Ccna2 expression by using adenovirus transfection and cultured them for 3 weeks. Co-expression of the mature cardiac marker troponin Tc with the immature cardiac marker non-muscle myosin IIB was observed. Additionally, expression of epithelial to mesenchymal transition markers (vimentin and FSP1) was observed. Also, decreased expression of mature cardiac markers α-MHC , ckmt2 and cTnT was noted. To study the factors responsible for human cardiomyocyte plasticity and cell division, we have optimized a novel method for culturing adult human cardiomyocytes in our laboratory. We cultured cardiomyocytes isolated from heart tissue obtained from a 55 yr old male patient. After transfection with CCNA2 adenovirus made for human use (cTnT promoter driving human CCNA2 cDNA), they were co-transfected with two more adenoviruses (1) cTnT-GFP to label cardiomyocytes (green) and (2) CMV-α-actinin-m-Cherry to label the sarcomere (red). Time lapse live epifluorescence microscopy was carried out for 70 hrs and time lapse movies were prepared (please refer the youtube link to see a representative time lapse movie https://youtu.be/OBrJGCq7YCA ). Movies were analyzed to calculate the cytokinesis index in samples transfected with (Test) and without (Null) CCNA2 adenoviruses. We observed a significantly higher cytokinesis index in CCNA2 samples versus Null. We are further investigating the role of cyclin A2 in dedifferentiation of adult human cardiomyocytes to generate immature or progenitor cardiac cells and their contractile status, which could be utilized for regeneration and functional restoration of damaged adult heart tissue.

2019 ◽  
Author(s):  
Hsiao-yun Y. Milliron ◽  
Matthew J. Weiland ◽  
Eric J. Kort ◽  
Stefan Jovinge

AbstractRationale-Adult human cardiomyocytes (CMs) do not complete cytokinesis despite passing through the S-phase of the cell cycle. As a result polyploidization and multinucleation occur. In order to get a deeper understanding of the mechanisms surrounding division of CMs there is a crucial need for a technique to isolate CMs that complete cell division/cytokinesis.Objective-Markers of cell cycle progression based on DNA content cannot distinguish between mitotic CMs that fail to complete cytokinesis from those cells that undergo true cell division. With the use of molecular beacons (MB) targeting specific mRNAs we aimed to identify truly proliferative CMs derived from hiPSCs.Methods and Results-Fluorescence activated cell-sorting combined with molecular beacons was performed to sort CM populations enriched for mitotic cells. Expressions of cell-cycle specific genes were confirmed by means of RT-qPCR, single-cell RNA sequencing (scRNA-seq). We further characterized the sorted groups by proliferation assays and time-lapse microscopy which confirmed the proliferative advantage of MB-positive cell populations relative to MB-negative and G2/M populations. Gene expression analysis revealed that the MB-positive CM subpopulation exhibited patterns consistent with the biological processes of nuclear division, chromosome segregation, and transition from M to G1 phase. The use of dual-MBs targeting CDC20 and SPG20 mRNAs (CDC20+SPG20+) enabled the enrichment of cytokinetic events. Interestingly, cells that did not complete cytokinesis and remained binucleated were found to be CDC20−SPG20+ while polyploid CMs that replicated DNA but failed to complete karyokinesis were found to be CDC20−SPG20−.Conclusions-This study demonstrates a novel alternative to existing DNA content-based approaches for sorting CMs with true mitotic potential that can be used to study in detail the unique dynamics of CM nuclei during mitosis. Together with high-throughput scRNA-seq, our technique for sorting live CMs undergoing cytokinesis would provide a basis for future studies to uncover mechanisms underlying the development and regeneration of heart tissue.


2010 ◽  
Vol 21 (18) ◽  
pp. 3149-3161 ◽  
Author(s):  
Delquin Gong ◽  
James E. Ferrell

Here we have used siRNAs and time-lapse epifluorescence microscopy to examine the roles of various candidate mitotic cyclins in chromatin condensation in HeLa cells. Knocking down cyclin A2 resulted in a substantial (∼7 h) delay in chromatin condensation and histone H3 phosphorylation, and expressing an siRNA-resistant form of cyclin A2 partially rescued chromatin condensation. There was no detectable delay in DNA replication in the cyclin A2 knockdowns, arguing that the delay in chromatin condensation is not secondary to a delay in S-phase completion. Cyclin A2 is required for the activation and nuclear accumulation of cyclin B1-Cdk1, raising the possibility that cyclin B1-Cdk1 mediates the effects of cyclin A2. Consistent with this possibility, we found that chromatin condensation was tightly associated temporally with the redistribution of cyclin B1 to the nucleus. Moreover, a constitutively nuclear cyclin B1 rescued chromatin condensation in cyclin A2 knockdown cells. On the other hand, knocking down cyclin B1 delayed chromatin condensation by only about one hour. Our working hypothesis is that active, nuclear cyclin B1-Cdk1 normally cooperates with cyclin A2 to bring about early mitotic events. Because cyclin A2 is present only during the early stages of mitosis, we asked whether cyclin B knockdown might have more dramatic defects on late mitotic events. Consistent with this possibility, we found that cyclin B1- and cyclin B1/B2-knockdown cells had difficulty in maintaining a mitotic arrest in the presence of nocodazole. Taken together, these data suggest that cyclin A2 helps initiate mitosis, in part through its effects on cyclin B1, and that cyclins B1 and B2 are particularly critical for the maintenance of the mitotic state.


2020 ◽  
Vol 21 (10) ◽  
pp. 3725 ◽  
Author(s):  
Teresa Mancuso ◽  
Antonella Barone ◽  
Alessandro Salatino ◽  
Claudia Molinaro ◽  
Fabiola Marino ◽  
...  

Cardiac remuscularization has been the stated goal of the field of regenerative cardiology since its inception. Along with the refreshment of lost and dysfunctional cardiac muscle cells, the field of cell therapy has expanded in scope encompassing also the potential of the injected cells as cardioprotective and cardio-reparative agents for cardiovascular diseases. The latter has been the result of the findings that cell therapies so far tested in clinical trials exert their beneficial effects through paracrine mechanisms acting on the endogenous myocardial reparative/regenerative potential. The endogenous regenerative potential of the adult heart is still highly debated. While it has been widely accepted that adult cardiomyocytes (CMs) are renewed throughout life either in response to wear and tear and after injury, the rate and origin of this phenomenon are yet to be clarified. The adult heart harbors resident cardiac/stem progenitor cells (CSCs/CPCs), whose discovery and characterization were initially sufficient to explain CM renewal in response to physiological and pathological stresses, when also considering that adult CMs are terminally differentiated cells. The role of CSCs in CM formation in the adult heart has been however questioned by some recent genetic fate map studies, which have been proved to have serious limitations. Nevertheless, uncontested evidence shows that clonal CSCs are effective transplantable regenerative agents either for their direct myogenic differentiation and for their paracrine effects in the allogeneic setting. In particular, the paracrine potential of CSCs has been the focus of the recent investigation, whereby CSC-derived exosomes appear to harbor relevant regenerative and reparative signals underlying the beneficial effects of CSC transplantation. This review focuses on recent advances in our knowledge about the biological role of exosomes in heart tissue homeostasis and repair with the idea to use them as tools for new therapeutic biotechnologies for “cell-less” effective cardiac regeneration approaches.


2015 ◽  
Vol 282 (1821) ◽  
pp. 20152147 ◽  
Author(s):  
Teresa Kennedy-Lydon ◽  
Nadia Rosenthal

The hearts of lower vertebrates such as fish and salamanders display scarless regeneration following injury, although this feature is lost in adult mammals. The remarkable capacity of the neonatal mammalian heart to regenerate suggests that the underlying machinery required for the regenerative process is evolutionarily retained. Recent studies highlight the epicardial covering of the heart as an important source of the signalling factors required for the repair process. The developing epicardium is also a major source of cardiac fibroblasts, smooth muscle, endothelial cells and stem cells. Here, we examine animal models that are capable of scarless regeneration, the role of the epicardium as a source of cells, signalling mechanisms implicated in the regenerative process and how these mechanisms influence cardiomyocyte proliferation. We also discuss recent advances in cardiac stem cell research and potential therapeutic targets arising from these studies.


2021 ◽  
Vol 22 (12) ◽  
pp. 6422
Author(s):  
Caroline Pham ◽  
Noelia Muñoz-Martín ◽  
Elisabeth M. Lodder

In the two decades since the discovery of TNNI3K it has been implicated in multiple cardiac phenotypes and physiological processes. TNNI3K is an understudied kinase, which is mainly expressed in the heart. Human genetic variants in TNNI3K are associated with supraventricular arrhythmias, conduction disease, and cardiomyopathy. Furthermore, studies in mice implicate the gene in cardiac hypertrophy, cardiac regeneration, and recovery after ischemia/reperfusion injury. Several new papers on TNNI3K have been published since the last overview, broadening the clinical perspective of TNNI3K variants and our understanding of the underlying molecular biology. We here provide an overview of the role of TNNI3K in cardiomyopathy and arrhythmia covering both a clinical perspective and basic science advancements. In addition, we review the potential of TNNI3K as a target for clinical treatments in different cardiac diseases.


Author(s):  
Kang Zhou ◽  
Yan Xu ◽  
Qiong Wang ◽  
Lini Dong

Abstract Myocardial injury is still a serious condition damaging the public health. Clinically, myocardial injury often leads to cardiac dysfunction and, in severe cases, death. Reperfusion of the ischemic myocardial tissues can minimize acute myocardial infarction (AMI)-induced damage. MicroRNAs are commonly recognized in diverse diseases and are often involved in the development of myocardial ischemia/reperfusion injury. However, the role of miR-431 remains unclear in myocardial injury. In this study, we investigated the underlying mechanisms of miR-431 in the cell apoptosis and autophagy of human cardiomyocytes in hypoxia/reoxygenation (H/R). H/R treatment reduced cell viability, promoted cell apoptotic rate, and down-regulated the expression of miR-431 in human cardiomyocytes. The down-regulation of miR-431 by its inhibitor reduced cell viability and induced cell apoptosis in the human cardiomyocytes. Moreover, miR-431 down-regulated the expression of autophagy-related 3 (ATG3) via targeting the 3ʹ-untranslated region of ATG3. Up-regulated expression of ATG3 by pcDNA3.1-ATG3 reversed the protective role of the overexpression of miR-431 on cell viability and cell apoptosis in H/R-treated human cardiomyocytes. More importantly, H/R treatments promoted autophagy in the human cardiomyocytes, and this effect was greatly alleviated via miR-431-mimic transfection. Our results suggested that miR-431 overexpression attenuated the H/R-induced myocardial damage at least partly through regulating the expression of ATG3.


2019 ◽  
Vol 6 (2) ◽  
pp. 16 ◽  
Author(s):  
Suneeta Narumanchi ◽  
Karri Kalervo ◽  
Sanni Perttunen ◽  
Hong Wang ◽  
Katariina Immonen ◽  
...  

The let-7c family of micro-RNAs (miRNAs) is expressed during embryonic development and plays an important role in cell differentiation. We have investigated the role of let-7c in heart regeneration after injury in adult zebrafish. let-7c antagomir or scramble injections were given at one day after cryoinjury (1 dpi). Tissue samples were collected at 7 dpi, 14 dpi and 28 dpi and cardiac function was assessed before cryoinjury, 1 dpi, 7 dpi, 14 dpi and 28 dpi. Inhibition of let-7c increased the rate of fibrinolysis, increased the number of proliferating cell nuclear antigen (PCNA) positive cardiomyocytes at 7 dpi and increased the expression of the epicardial marker raldh2 at 7 dpi. Additionally, cardiac function measured with echocardiography recovered slightly more rapidly after inhibition of let-7c. These results reveal a beneficial role of let-7c inhibition in adult zebrafish heart regeneration.


1979 ◽  
Vol 83 (1) ◽  
pp. 126-142 ◽  
Author(s):  
R D Allen ◽  
L R Zacharski ◽  
S T Widirstky ◽  
R Rosenstein ◽  
L M Zaitlin ◽  
...  

Blood platelets from 10 normal human subjects have been examined with a sensitive differential interference contrast (DIC) microscope. The entire transformation process during adhesion to glass is clearly visible and has been recorded cinematographically, including the disk to sphere change of shape, the formation of sessile protuberances, the extension and retraction of pseudopodia, and the spreading, ruffling, and occasional regression of the hyalomere. The exocytosis of intact dense bodies can be observed either by DIC microscopy, or by epifluorescence microscopy in platelets stained with mepacrine. Details of fluorescent flashes indicate that the dense bodies usually release their contents extracellularly, may do so intracytoplasmically under the influence of strong, short wavelength light on some preparations of mepacrine-stained platelets. The release of one or more dense bodies leaves a crater of variable size on the upper surface of the granulomere. Such craters represent the surface component of the open canalicular system and their formation and disappearance can be directly observed. Because these techniques permit quantitation of several parameters of motility which are not readily observable by other techniques, it is suggested that high extinction DIC microscope examination may become a rapid and useful method of studying congenital and acquired platelet disorders. Many features of platelet transformation have been confirmed and extended by scanning electron micrographs. These can in turn be interpreted by reference to time-lapse films of living platelets.


Sign in / Sign up

Export Citation Format

Share Document