Abstract 103: Mechanistic Interplay Between Cardioprotection And Heart Regeneration Mediated By The ER-bound Transcription Factor Nrf1

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Miao Cui ◽  
Atmanli Ayhan ◽  
Ning Liu ◽  
Rhonda S Bassel-duby ◽  
Eric N Olson

Cardiomyocyte loss is the underlying basis for a majority of heart diseases. Preventing cardiomyocytes from death (cardioprotection) and replenishing the lost myocardium (regeneration) are the central goals for heart repair. Although cardioprotection and heart regeneration have been traditionally thought to involve separate mechanisms, protection of cardiomyocytes from injury or disease stimuli is a prerequisite to any meaningful regenerative response. In our study, we sought to understand how neonatal cardiomyocytes cope with injury-induced stress to regenerate damaged myocardium and whether the underlying mechanisms could be leveraged to promote heart regeneration and repair in adults. Using spatial transcriptomic profiling, we visualized regenerative cardiomyocytes reconstituting damaged myocardium after ischemia, and found that they are marked by expression of Nrf1, an ER-bound stress responsive transcription factor. Single-nucleus RNA sequencing revealed that genetic deletion of Nrf1 prevented neonatal cardiomyocytes from activating a transcriptional program required for heart regeneration. Conversely, overexpression of Nrf1 protected the adult mouse heart from ischemia/reperfusion injury. Nrf1 also protected human induced pluripotent stem cell-derived cardiomyocytes from cardiotoxicity induced by the chemotherapeutic drug doxorubicin. The cardioprotective function of Nrf1 is mediated by a dual stress response mechanism involving activation of the proteasome and maintenance of redox balance. Taken together, our study uncovers a unique adaptive mechanism activated in response to injury that maintains the tissue homeostatic balance required for heart regeneration. Reactivating these mechanisms in the adult heart represents a potential therapeutic approach for cardiac repair.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Miao Cui ◽  
Ayhan Atmanli ◽  
Maria Gabriela Morales ◽  
Wei Tan ◽  
Kenian Chen ◽  
...  

AbstractFollowing injury, cells in regenerative tissues have the ability to regrow. The mechanisms whereby regenerating cells adapt to injury-induced stress conditions and activate the regenerative program remain to be defined. Here, using the mammalian neonatal heart regeneration model, we show that Nrf1, a stress-responsive transcription factor encoded by the Nuclear Factor Erythroid 2 Like 1 (Nfe2l1) gene, is activated in regenerating cardiomyocytes. Genetic deletion of Nrf1 prevented regenerating cardiomyocytes from activating a transcriptional program required for heart regeneration. Conversely, Nrf1 overexpression protected the adult mouse heart from ischemia/reperfusion (I/R) injury. Nrf1 also protected human induced pluripotent stem cell-derived cardiomyocytes from doxorubicin-induced cardiotoxicity and other cardiotoxins. The protective function of Nrf1 is mediated by a dual stress response mechanism involving activation of the proteasome and redox balance. Our findings reveal that the adaptive stress response mechanism mediated by Nrf1 is required for neonatal heart regeneration and confers cardioprotection in the adult heart.


Author(s):  
Fengyun Zhou ◽  
Ting Feng ◽  
Xiangqi Lu ◽  
Huicheng Wang ◽  
Yangping Chen ◽  
...  

Abstract Mitochondrial reactive oxygen species (mtROS)-induced apoptosis has been suggested to contribute to myocardial ischemia/reperfusion injury. Interleukin 35 (IL-35), a novel anti-inflammatory cytokine, has been shown to protect the myocardium and inhibit mtROS production. However, its effect on cardiomyocytes upon exposure to hypoxia/reoxygenation (H/R) damage has not yet been elucidated. The present study aimed to investigate the potential protective role and underlying mechanisms of IL-35 in H/R-induced mouse neonatal cardiomyocyte injury. Mouse neonatal cardiomyocytes were challenged to H/R in the presence of IL-35, and we found that IL-35 dose dependently promotes cell viability, diminishes mtROS, maintains mitochondrial membrane potential, and decreases the number of apoptotic cardiomyocytes. Meanwhile, IL-35 remarkably activates mitochondrial STAT3 (mitoSTAT3) signaling, inhibits cytochrome c release, and reduces apoptosis signaling. Furthermore, co-treatment of the cardiomyocytes with the STAT3 inhibitor AG490 abrogates the IL-35-induced cardioprotective effects. Our study identified the protective role of IL-35 in cardiomyocytes following H/R damage and revealed that IL-35 protects cardiomyocytes against mtROS-induced apoptosis through the mitoSTAT3 signaling pathway during H/R.


2021 ◽  
Author(s):  
Camila Dossi ◽  
Romina Vargas ◽  
Rodrigo Valenzuela ◽  
Luis Videla

Liver ischemia-reperfusion injury (IRI) is a phenomenon inherent to hepatic surgery that severely compromises the organ functionality, whose underlying mechanisms involve cellular and molecular interrelated processes leading to the development...


2006 ◽  
Vol 41 (2) ◽  
pp. 256-264 ◽  
Author(s):  
Shakil A. Khan ◽  
Fadi Salloum ◽  
Anindita Das ◽  
Lei Xi ◽  
George W. Vetrovec ◽  
...  

2015 ◽  
Vol 36 (1) ◽  
pp. 373-383 ◽  
Author(s):  
Bo Fang ◽  
Xiao-Qian Li ◽  
Bo Bi ◽  
Wen-Fei Tan ◽  
Gang Liu ◽  
...  

Background/Aims: Dexmedetomidine has beneficial effects on ischemia reperfusion (I/R) injury to the spinal cord, but the underlying mechanisms are not fully understood. This study investigated the effects and possible mechanisms of dexmedetomidine on blood-spinal cord barrier (BSCB) disruption induced by spinal cord I/R injury. Methods: Rats were intrathecally pretreated with dexmedetomidine or PBS control 30 minutes before undergoing 14-minute occlusion of aortic arch. Hind-limb motor function was assessed using Tarlov criteria, and motor neurons in the ventral gray matter were counted by histological examination. The permeability of the BSCB was examined using Evans blue (EB) as a vascular tracer. The spinal cord edema was evaluated using the wet-dry method. The expression and localization of matrix metalloproteinase-9 (MMP-9), Angiopoietin-1 (Ang1) and Tie2 were assessed by western blot, real-time polymerase chain reaction, and immunofluorescence. Results: Intrathecal preconditioning with dexmedetomidine minimized the neuromotor dysfunction and histopathological deficits, and attenuated EB extravasation after spinal cord I/R injury. In addition, dexmedetomidine preconditioning suppressed I/R-induced increase in MMP-9. Finally, Dexmedetomidine preconditioning enhanced the Ang1-Tie2 system activity after spinal cord I/R injury. Conclusions: Dexmedetomidine preconditioning stabilized the BSCB integrity against spinal cord I/R injury by inhibition of MMP-9, and enhancing the Ang1-Tie2 system.


2020 ◽  
Vol 4 (1) ◽  
pp. 5
Author(s):  
Jennifer L. Major ◽  
Rushita A. Bagchi ◽  
Julie Pires da Silva

Over the past two decades, it has become increasingly evident that microRNAs (miRNA) play a major role in human diseases such as cancer and cardiovascular diseases. Moreover, their easy detection in circulation has made them a tantalizing target for biomarkers of disease. This surge in interest has led to the accumulation of a vast amount of miRNA expression data, prediction tools, and repositories. We used the Human microRNA Disease Database (HMDD) to discover miRNAs which shared expression patterns in the related diseases of ischemia/reperfusion injury, coronary artery disease, stroke, and obesity as a model to identify miRNA candidates for biomarker and/or therapeutic intervention in complex human diseases. Our analysis identified a single miRNA, hsa-miR-21, which was casually linked to all four pathologies, and numerous others which have been detected in the circulation in more than one of the diseases. Target analysis revealed that hsa-miR-21 can regulate a number of genes related to inflammation and cell growth/death which are major underlying mechanisms of these related diseases. Our study demonstrates a model for researchers to use HMDD in combination with gene analysis tools to identify miRNAs which could serve as biomarkers and/or therapeutic targets of complex human diseases.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yaqi Shen ◽  
Zhuqing Shen ◽  
Shanshan Luo ◽  
Wei Guo ◽  
Yi Zhun Zhu

Hydrogen sulfide (H2S) is now recognized as a third gaseous mediator along with nitric oxide (NO) and carbon monoxide (CO), though it was originally considered as a malodorous and toxic gas. H2S is produced endogenously from cysteine by three enzymes in mammalian tissues. An increasing body of evidence suggests the involvement of H2S in different physiological and pathological processes. Recent studies have shown that H2S has the potential to protect the heart against myocardial infarction, arrhythmia, hypertrophy, fibrosis, ischemia-reperfusion injury, and heart failure. Some mechanisms, such as antioxidative action, preservation of mitochondrial function, reduction of apoptosis, anti-inflammatory responses, angiogenic actions, regulation of ion channel, and interaction with NO, could be responsible for the cardioprotective effect of H2S. Although several mechanisms have been identified, there is a need for further research to identify the specific molecular mechanism of cardioprotection in different cardiac diseases. Therefore, insight into the molecular mechanisms underlying H2S action in the heart may promote the understanding of pathophysiology of cardiac diseases and lead to new therapeutic targets based on modulation of H2S production.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Harpreet Singh ◽  
Kajol Shah ◽  
Devsena Ponnalagu ◽  
Sanjay Chandrasekhar ◽  
Andrew R Kohut ◽  
...  

Expression and activation of the large conductance calcium and voltage-gated potassium (BK Ca ) channels encoded by Kcnma1 gene is shown to be vital in cardioprotection from ischemia-reperfusion injury. BK Ca channels present in SA node cells regulate the heart rate, and in blood vessels play an active role in vascular relaxation. However, the role of BK Ca in regulation of structure and function of the heart is not fully-established. Using Kcnma1 -/- mice, we have observed structural changes in cardiomyocytes and compromised cardiac function as compared to wild type mice. Absence of BK Ca resulted in significant increase in size of adult cardiomyocytes (from 7.95 + 0.1 um 2 to 9.68 + 0.1 um 2 , p < 0.01, n=480 cells each) and also increased cardiac fibrosis. Further to determine underlying signaling mechanisms in cardiac hypertrophy, we performed microarray analysis of RNAs isolated from wild type and Kcnma1 -/- mice (n=3) hearts. We found up regulation of a class of cardiac hypertrophy markers (myosin variants) and changes in the expression of several mitochondrial genes (such as ND4) directly associated with heart diseases in Kcnma1 -/- mice. To evaluate the functional consequence of absence of BK Ca , we performed high-resolution echocardiography on wild type and Kcnma1 -/- mice. Under anesthesia (1.5% isoflurane), left ventricle of Kcnma1 -/- mice showed significant reduction (p < 0.05) in ejection fraction (56 + 2 %, n=7) as compared to wild type (74 + 3 %, n=6) as well as fractional shortening (23 + 3 %, n=7, and 39 + 3 %, n=6, respectively). Similarly, right ventricle had a lower ejection fraction (35.7 + 4% vs 56.9 + 5 %, n > 5) in Kcnma1 -/- as compared to wild type mice. In agreement with our histopathology and microarray data, Kcnma1 -/- mice showed increased posterior wall thickness (0.75 + 0.3 mm vs 0.62 + 0.1 mm) and interventricular septum thickness (0.83 + 0.4 mm, n=7 vs 0.68 + 0.3 mm, n=6) . Together, these data imply that BK Ca plays a direct role in cardiac hypertrophy and cardiac function.


Sign in / Sign up

Export Citation Format

Share Document