Abstract P505: Rv Sarcomeres From Lv-hfref Patients With Low Papi Have Abnormal Rv Thick Filament Structure

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Vivek Jani ◽  
Mohammed I Aslam ◽  
Weikang Ma ◽  
Henry Gong ◽  
Anthony Cammarato ◽  
...  

Patients with left heart failure and reduced ejection fraction (HFrEF) have variable RV failure that, if present, drastically worsens outcomes. In a cohort of 21 HFrEF patients from two hospital sites, we have previously shown (Aslam et al, Eur J HF; 2020: volume 23, pages 339-341) that like global function, RV myocyte maximum calcium-activated myocyte tension (T max ) is quite variable (COV 27%). To determine if a relationship between RV myocyte function and indices of RV chamber function exists, we trained a random forest classifier based on 41 clinical variables, including hemodynamic, laboratory, and echocardiographic data, and queried the importance of each. This revealed that the most predictive model for reduced T max was based on the pulmonary artery pulsatility index (PAPi), an established clinical index of RV failure. To gain insight into potential mechanisms for depressed T max in HFrEF patients with a low PAPi, we obtained small angle x-ray diffraction patterns in 5 HFrEF patients with depressed PAPi and T max and compared this to 5 non-failing (NF) controls. The equatorial intensity ratio I(1,1)/I(1,0) was reduced in low T max RV muscle fibers vs. controls (0.250.06 vs. 0.180.02, P<0.0001), suggesting myosin heads are more associated with the thick filament backbone. In meridional reflections, we find a significant decrease in M3 band spacing (14.340.03 nm in NF vs. 14.300.01 nm in HFrEF; P=0.0013) suggesting more myosin heads are in the “OFF” configuration. The latter may underly tension reduction in RV myocytes from failing RV HFrEF patients. Ongoing studies will examine these structural changes in HFrEF patients with a broader range of PAPi and T max to test if this association applies. These findings focus attention on thick filament structural and configuration abnormalities as potential culprits underlying RV disease in HFrEF. Further studies using novel sarcomere enhancers will test if these changes can be remedied, and if so, in which patients.

1992 ◽  
Vol 7 (4) ◽  
pp. 940-945 ◽  
Author(s):  
K. Kuriyama ◽  
M.S. Dresselhaus

The electronic transition from localized to delocalized states of carriers in a disordered carbon material is investigated by photoconductivity measurements. Phenol-derived activated carbon fibers, where the carriers are strongly localized due to disorder, are heat treated in the range 300–2500 °C to give rise to the insulator-metal transition. Dark conductivity, Raman spectra, and x-ray diffraction patterns are also measured to characterize their structural changes. As a result, the transition temperature was determined to be rather low, around 1000 °C, considering the rapid decrease in the photoconductivity above this temperature. This decrease was ascribed to a fast recombination between the photoexcited carriers and the delocalized carriers generated by heat treatment.


2012 ◽  
Vol 1372 ◽  
Author(s):  
José H. Mina ◽  
Alex Valadez ◽  
Pedro J. Herrera-Franco ◽  
Tanit Toledano

ABSTRACTIn this work the change in the structural properties of cassava (manihot sculenta Crantz) thermoplastic starch (TPS) under controlled environment (humidity and temperature) was studied. Fourier Transform Infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results showed an evident increasing in the amorphous phase of the TPS regarding the native starch. There was a relative decrease of the band at 1047 cm-1 associated to crystalline structure of starch compared to the amorphous peak at 1022 cm-1. The X-ray diffraction patterns confirmed the increment of the amorphous phase in the TPS samples. Likewise the X-ray diffraction patterns shows evidence of residual type C crystallinity and the formation of a new crystalline phase type VH due to the orientation induced in plasticization process. In first stage of conditioning the tensile yield stress drops from 7.5 drops to 0.5 MPa and the break strain increases 1000%. At the same time it seems that the crystallinity of the samples increases as was evidenced by the gradually increasing of the FTIR band at 1047 cm-1. In a second stage, the yield stress increases, the break strain drops and the crystallinity continue growing steadily. These findings suggest that coexist two phenomena simultaneously in the samples. A phenomenon of re-crystallization (retrogradation) that tends to make the material more stiff and a process of plasticization that tends to softening it. It seems that the latter mechanism predominates in the first stage, at short times, and the former in the second stage, at older times.


1989 ◽  
Vol 94 (3) ◽  
pp. 391-401
Author(s):  
R.W. Kensler ◽  
M. Stewart

A procedure has been developed for isolating gold-fish skeletal muscle thick filaments that preserves the near-helical arrangement of the myosin cross-bridges under relaxing conditions. These filaments have been examined by electron microscopy and computer image analysis. Electron micrographs of the negatively stained filaments showed a clear periodicity associated with the crossbridges, with an axial repeat every 42.9 nm. Computed Fourier transforms of the negatively stained filaments showed a series of layer lines confirming this periodicity, and were similar to the X-ray diffraction patterns of fish muscle obtained by J. Hartford and J. Squire. Analysis of the computed transform data and filtered images of the isolated fish filaments demonstrated that the myosin crossbridges lie along three strands. Platinum shadowing demonstrated that the strands have a right-handed orientation, and computed transforms and filtered images of the shadowed filaments suggest that the crossbridges are perturbed both axially and azimuthally from an ideal helical arrangement.


2012 ◽  
Vol 706-709 ◽  
pp. 878-883 ◽  
Author(s):  
Paolo Deodati ◽  
Franco Gauzzi ◽  
Roberto Montanari ◽  
Alessandra Varone

Liquid Pb–Bi eutectic (LBE) alloy has been selected as coolant and neutron spallation source for the development of MYRRHA, an accelerator driven system (ADS). The alloy has been characterized in liquid state from melting (125 °C) to 750 °C by mechanical spectroscopy, i.e. internal friction (IF) and dynamic modulus measurements. The experiments have been carried out using hollow reeds of austenitic stainless steel filled with Pb-Bi alloy and sealed at the extremities. Dynamic modulus showed a remarkable drop in the range 350-520 °C. In the same temperature range radial distribution functions (RDFs), determined from X-ray diffraction patterns, evidenced variations of the mean distance between the 1st nearest neighbour atoms. The phenomenon has been explained as a structural re-arrangement of atoms in the liquid metal.


1989 ◽  
Vol 22 (1) ◽  
pp. 72-74 ◽  
Author(s):  
Y. Tajima ◽  
K. Okada ◽  
O. Yoshida ◽  
T. Seto ◽  
Y. Amemiya

Small-angle X-ray diffraction patterns from the anterior byssus retractor muscles of Mytilus edulis contracting tonically in response to stimulation with acetylcholine were recorded in a 30 s exposure with synchrotron radiation and a high-sensitivity X-ray area detector called an imaging plate. The 190 Å layer line from the thin filaments increased in intensity with increase in tonic tension up to 6 x 104 kg m−2. Above this value, the layer-line intensity remained almost constant and comparable to that for a contracting skeletal muscle, indicating that the same structural changes of the thin filaments occur in both muscles.


2009 ◽  
Vol 96 (3) ◽  
pp. 619a
Author(s):  
Gerrie P. Farman ◽  
Edward J. Allen ◽  
Kelly Q. Schoenfelt ◽  
David Gore ◽  
Peter H. Backx ◽  
...  

1997 ◽  
Vol 12 (9) ◽  
pp. 2274-2280 ◽  
Author(s):  
B. Zhang ◽  
M. Estermann ◽  
W. Steurer

Decaprismatic single crystals taken from a series of alloys of nominal compositions within Al65–77Co3–22Ni3–22 have been studied by means of x-ray diffraction techniques. The substitution of Co by Ni in increasing amounts changes the (pseudo)decagonal diffraction patterns drastically and indicates structural changes which range from a single-crystalline approximant via orientationally ordered nanodomain structures and quasiperiodic phases with different types of ordering phenomena, to a basic decagonal phase. A quantum phase diagram analysis shows a clear separation of the stability regions of the ternary systems described in this study and other decagonal phases.


Author(s):  
Thomas Elsaesser ◽  
Michael Woerner

Femtosecond X-ray diffraction allows for real-time mapping of structural changes in condensed matter on atomic length and timescales. Sequences of diffraction patterns provide both transient geometries and charge-density maps of crystalline materials. This article reviews recent progress in this field, the main emphasis being on experimental work done with laser-driven hard X-ray sources. Both Bragg diffraction techniques for bulk and nanostructured single crystals as well as the recently implemented powder diffraction from polycrystalline samples are discussed. In ferroelectric superlattice structures, coherent phonon motions and the driving stress mechanisms are observed in real time. In molecular crystals charge-transfer processes and the concomitant changes of the lattice geometry are analyzed.


Author(s):  
Weikang Ma ◽  
Marcus Henze ◽  
Robert L Anderson ◽  
Henry M Gong ◽  
Fiona L Wong ◽  
...  

Rationale: Myofilament length dependent activation (LDA) is the key underlying mechanism of cardiac heterometric autoregulation, commonly referred as the Frank-Starling law of the heart. Although alterations in LDA are common in cardiomyopathic states, the precise structural and biochemical mechanisms underlying LDA remain unknown. Objective: Here, we examine the role of structural changes in the thick filament during diastole, in particular changes in the availability of myosin heads, in determining both calcium sensitivity and maximum contractile force during systole in permeabilized porcine cardiac fibers. Methods and Results: Permeabilized porcine fibers from ventricular myocardium were studied under relaxing conditions at short and long sarcomere length (SL) using muscle mechanics, biochemical measurements, and X-ray diffraction. Upon stretch, porcine myocardium showed the increased calcium sensitivity and maximum calcium activated force characteristic of LDA. Stretch increased diastolic ATP turnover, recruiting reserve myosin heads from the super-relaxed state (SRX) at longer SL. Structurally, X-ray diffraction studies in the relaxed-muscle confirmed a departure from the helical ordering of the thick-filament upon stretch which occurred concomitantly with a displacement of myosin heads towards actin, facilitating cross-bridge formation upon systolic activation. Mavacamten, a selective myosin-motor inhibitor known to weaken the transition to actin-bound power-generating states and to enrich the ordered SRX myosin population, reversed the structural effects of stretch on the thick-filament, blunting the mechanical consequences of stretch; mavacamten did not, however, prevent other structural changes associated with LDA in the sarcomere, such as decreased lattice spacing or troponin-displacement. Conclusions: Our findings strongly indicate that in ventricular muscle, LDA and its systolic consequences are dependent on the population of myosin heads competent to form cross-bridges and involves the recruitment of myosin heads from the reserve SRX pool during diastole.


1976 ◽  
Vol 46 (11) ◽  
pp. 779-785 ◽  
Author(s):  
Kay Sue Lee

A series of events occurred when wool was heated in vacuum. At some stages structural changes in the thermally-treated wool were observed, as reflected in the low-angle x-ray diffraction patterns. An increase in the intensity of the 39 Å meridional reflection and the appearance of a 4-point diagram with azimuthal angle of 45° at about 46 Å spacing were observed when wool was heated near 170°C for 90 min. Similar results were found in samples heated at higher temperatures but for shorter time. The most heat-resistant meridional reflection is the 66 Å. The low-angle x-ray diffraction patterns of plasma-treated wool showed only disappearance of the sharp lipid ring at 48 Å. No intensification of any reflection was observed. Prolonged treatment with plasma destroys the low-angle x-ray diffraction pattern of wool.


Sign in / Sign up

Export Citation Format

Share Document