Brain-Based Devices for the Study of Nervous Systems and the Development of Intelligent Machines

2005 ◽  
Vol 11 (1-2) ◽  
pp. 63-77 ◽  
Author(s):  
Jeffrey L. Krichmar ◽  
Gerald M. Edelman

The simultaneous study of brain function at all levels of organization is difficult to undertake with current experimental tools. Present day electrophysiology only allows the recording of at most hundreds of neurons while an animal is performing a behavioral task. Because of this limitation and the sheer complexity of the nervous system, computational modeling has become essential in developing theories of brain function. Accordingly, our group has constructed a series of brain-based devices (BBDs), that is, physical devices with simulated nervous systems that guide behavior, to serve as a heuristic for testing theories of brain function. Unlike animal models, BBDs permit analysis of activity at all levels of the nervous system as the device behaves in its environment. Although the principal focus of developing BBDs has been to test theories of brain function, this type of modeling may also provide a basis for robotic design and practical applications.

Cell Stress ◽  
2021 ◽  
Vol 5 (10) ◽  
pp. 146-166
Author(s):  
Emmanouela Kallergi ◽  
Vassiliki Nikoletopoulou

Aging represents a cumulative form of cellular stress, which is thought to challenge many aspects of proteostasis. The non-dividing, long-lived neurons are particularly vulnerable to stress, and, not sur-prisingly, even normal aging is highly associated with a decline in brain function in humans, as well as in other animals. Macroautophagy is a fundamental arm of the proteostasis network, safeguarding proper protein turnover during different cellular states and against diverse cellular stressors. An intricate interplay between macroautophagy and aging is beginning to unravel, with the emergence of new tools, including those for monitoring autophagy in cultured neurons and in the nervous system of different organisms in vivo. Here, we review recent findings on the impact of aging on neuronal integrity and on neuronal macroautophagy, as they emerge from studies in inverte-brate and mammalian models.


2021 ◽  
Vol 22 (11) ◽  
pp. 6115
Author(s):  
Boris Mravec

Research on the neurobiology of cancer, which lies at the border of neuroscience and oncology, has elucidated the mechanisms and pathways that enable the nervous system to modulate processes associated with cancer initiation and progression. This research has also shown that several drugs which modulate interactions between the nervous system and the tumor micro- and macroenvironments significantly reduced the progression of cancer in animal models. Encouraging results were also provided by prospective clinical trials investigating the effect of drugs that reduce adrenergic signaling on the course of cancer in oncological patients. Moreover, it has been shown that reducing adrenergic signaling might also reduce the incidence of cancer in animal models, as well as in humans. However, even if many experimental and clinical findings have confirmed the preventive and therapeutic potential of drugs that reduce the stimulatory effect of the nervous system on processes related to cancer initiation and progression, several questions remain unanswered. Therefore, the aim of this review is to critically evaluate the efficiency of these drugs and to discuss questions that need to be answered before their introduction into conventional cancer treatment and prevention.


1983 ◽  
Vol 96 (5) ◽  
pp. 1337-1354 ◽  
Author(s):  
P De Camilli ◽  
R Cameron ◽  
P Greengard

Synapsin I (formerly referred to as protein I) is the collective name for two almost identical phosphoproteins, synapsin Ia and synapsin Ib (protein Ia and protein Ib), present in the nervous system. Synapsin I has previously been shown by immunoperoxidase studies (De Camilli, P., T. Ueda, F. E. Bloom, E. Battenberg, and P. Greengard, 1979, Proc. Natl. Acad. Sci. USA, 76:5977-5981; Bloom, F. E., T. Ueda, E. Battenberg, and P. Greengard, 1979, Proc. Natl. Acad. Sci. USA 76:5982-5986) to be a neuron-specific protein, present in both the central and peripheral nervous systems and concentrated in the synaptic region of nerve cells. In those preliminary studies, the occurrence of synapsin I could be demonstrated in only a portion of synapses. We have now carried out a detailed examination of the distribution of synapsin I immunoreactivity in the central and peripheral nervous systems. In this study we have attempted to maximize the level of resolution of immunohistochemical light microscopy images in order to estimate the proportion of immunoreactive synapses and to establish their precise distribution. Optimal results were obtained by the use of immunofluorescence in semithin sections (approximately 1 micron) prepared from Epon-embedded nonosmicated tissues after the Epon had been removed. Our results confirm the previous observations on the specific localization of synapsin I in nerve cells and synapses. In addition, the results strongly suggest that, with a few possible exceptions involving highly specialized neurons, all synapses contain synapsin I. Finally, immunocytochemical experiments indicate that synapsin I appearance in the various regions of the developing nervous system correlates topographically and temporally with the appearance of synapses. In two accompanying papers (De Camilli, P., S. M. Harris, Jr., W. B. Huttner, and P. Greengard, and Huttner, W. B., W. Schiebler, P. Greengard, and P. De Camilli, 1983, J. Cell Biol. 96:1355-1373 and 1374-1388, respectively), evidence is presented that synapsin I is specifically associated with synaptic vesicles in nerve endings.


2002 ◽  
Vol 13 (2) ◽  
pp. 698-710 ◽  
Author(s):  
Sylvie Ozon ◽  
Antoine Guichet ◽  
Olivier Gavet ◽  
Siegfried Roth ◽  
André Sobel

Stathmin is a ubiquitous regulatory phosphoprotein, the generic element of a family of neural phosphoproteins in vertebrates that possess the capacity to bind tubulin and interfere with microtubule dynamics. Although stathmin and the other proteins of the family have been associated with numerous cell regulations, their biological roles remain elusive, as in particular inactivation of the stathmin gene in the mouse resulted in no clear deleterious phenotype. We identified stathmin phosphoproteins inDrosophila, encoded by a unique gene sharing the intron/exon structure of the vertebrate stathmin andstathmin family genes. They interfere with microtubule assembly in vitro, and in vivo when expressed in HeLa cells. Drosophila stathmin expression is regulated during embryogenesis: it is high in the migrating germ cells and in the central and peripheral nervous systems, a pattern resembling that of mammalian stathmin. Furthermore, RNA interference inactivation ofDrosophila stathmin expression resulted in germ cell migration arrest at stage 14. It also induced important anomalies in nervous system development, such as loss of commissures and longitudinal connectives in the ventral cord, or abnormal chordotonal neuron organization. In conclusion, a single Drosophilagene encodes phosphoproteins homologous to the entire vertebrate stathmin family. We demonstrate for the first time their direct involvement in major biological processes such as development of the reproductive and nervous systems.


e-Neuroforum ◽  
2017 ◽  
Vol 23 (3) ◽  
Author(s):  
Alexander Groh ◽  
Rebecca Mease ◽  
Patrik Krieger

AbstractThe transduction of painful stimuli into the experience of pain involves several peripheral and central signaling pathways of the nervous system. The organization of these pathways parallels the main functions of pain: the assessment of noxious stimuli (where, what, how strong), and the negative emotion of unpleasantness. Multiple lines of evidence suggest that the thalamocortical (TC) system, which interprets ascending pain signals, has two main pathways which support these functions. We discuss the structural and functional findings that support the view that the lateral TC pathway is involved in discriminative assessment of pain, while the medial TC pathway gives rise to aversive emotions associated with pain. Our review focuses on acute pain, but we also discuss putative TC maladaptations in humans and animal models of pain that are thought to underlie pathological pain sensations.


2018 ◽  
Vol 1 ◽  
Author(s):  
Sebastian Markett ◽  
Christian Montag ◽  
Martin Reuter

AbstractPersonality and individual differences originate from the brain. Despite major advances in the affective and cognitive neurosciences, however, it is still not well understood how personality and single personality traits are represented within the brain. Most research on brain-personality correlates has focused either on morphological aspects of the brain such as increases or decreases in local gray matter volume, or has investigated how personality traits can account for individual differences in activation differences in various tasks. Here, we propose that personality neuroscience can be advanced by adding a network perspective on brain structure and function, an endeavor that we label personality network neuroscience.With the rise of resting-state functional magnetic resonance imaging (MRI), the establishment of connectomics as a theoretical framework for structural and functional connectivity modeling, and recent advancements in the application of mathematical graph theory to brain connectivity data, several new tools and techniques are readily available to be applied in personality neuroscience. The present contribution introduces these concepts, reviews recent progress in their application to the study of individual differences, and explores their potential to advance our understanding of the neural implementation of personality.Trait theorists have long argued that personality traits are biophysical entities that are not mere abstractions of and metaphors for human behavior. Traits are thought to actually exist in the brain, presumably in the form of conceptual nervous systems. A conceptual nervous system refers to the attempt to describe parts of the central nervous system in functional terms with relevance to psychology and behavior. We contend that personality network neuroscience can characterize these conceptual nervous systems on a functional and anatomical level and has the potential do link dispositional neural correlates to actual behavior.


Author(s):  
Dale Purves

Although understanding neural functions has progressed at a remarkable pace in recent decades, a fundamental question remains: How does the nervous system relate the objective world to the subjective domain of perception? Everyday experience implies that the neural connections on which we and other animals depend link physical parameters in the environment with useful responses. But that interpretation won't work: biological sensory systems cannot measure the physical world. Whereas something is linking sensory inputs to useful responses, it is not the physical world that instruments measure. How, then, have we animals met this challenge, and what is it that we end up perceiving? The purpose of this chapter is to suggest how nervous systems have evolved to deal with the inability to convey the objective properties of the real world.


Sign in / Sign up

Export Citation Format

Share Document