scholarly journals An Economic Evaluation of the Health Effects of Reducing Fine Particulate Pollution in Chinese Cities

2018 ◽  
Vol 35 (2) ◽  
pp. 58-84 ◽  
Author(s):  
Yana Jin ◽  
Shiqiu Zhang

Fine particulate pollution (PM2.5) is a leading mortality risk factor in the People's Republic of China (PRC) and many Asian countries. Current studies of PM2.5 mortality have been conducted at the national and provincial levels, or at the grid-based micro level, and report only the exposure index or attributable premature deaths. Little is known about the welfare implications of PM2.5 mortality for urban areas. In this study, we estimate the total cost of PM2.5 mortality, the benefit of its reduction achieved through meeting various air quality targets, and the benefit of mortality reduction achieved through a uniform 10 micrograms per cubic meter decrease in PM2.5 concentration in the urban areas of 300 major cities in the PRC. Significant heterogeneity exists in welfare indicators across rich versus poor and clean versus dirty cities. The results indicate that cities in the PRC should accelerate the fine particulate pollution control process and implement more stringent air quality targets to achieve much greater mortality reduction benefits.

2021 ◽  
Author(s):  
Allen Blackman ◽  
Jorge Bonilla ◽  
Laura Villalobos

In cities around the world, Covid-19 lockdowns have improved outdoor air quality, in some cases dramatically. Even if only temporary, these improvements could have longer-lasting effects on policy by making chronic air pollution more salient and boosting political pressure for change. To that end, it is important to develop objective estimates of both the air quality improvements associated with Covid-19 lockdowns and the benefits these improvements generate. We use panel data econometric models to estimate the effect of Bogotás lockdown on fine particulate pollution, epidemiological models to simulate the effect of reductions in that pollution on long-term and short-term mortality, and benefit transfer methods to estimate the monetary value of the avoided mortality. We find that in its first year of implementation, on average, Bogotás lockdown cut fine particulate pollution by more than one-fifth. However, the magnitude of that effect varied considerably over the course of the year and across the citys neighborhoods. Equivalent permanent reductions in fine particulate pollution would reduce long-term premature deaths by more than one-quarter each year, a benefit valued at $670 million per year. Finally, we estimate that in 2020-2021, the lockdown reduced short-term deaths by 31 percent, a benefit valued at $180 million.


2017 ◽  
Author(s):  
Giovanni Di Virgilio ◽  
Melissa Anne Hart ◽  
Ningbo Jiang

Abstract. Internationally, severe wildfires are an escalating problem likely to worsen given projected changes to climate. Hazard reduction burns (HRB) are used to suppress wildfire occurrences, but they generate considerable emissions of atmospheric fine particulate matter, which depending upon prevailing atmospheric conditions, can degrade air quality. Our objectives are to improve understanding of the relationships between meteorological conditions and air quality during HRBs in Sydney, Australia. We identify the primary meteorological covariates linked to high PM2.5 pollution (particulates


Air quality emergency in urban communities is mostly because of vehicular emanations. Transportation frameworks are expanding all over the place and the enhancements in innovation are deficient to neutralize development. Transport sections contribute a large offer to natural emissions (around 70 percent). One of these CO pollutants is the considerable emission from the part of the vehicle that contributes 90 percent of the total discharge. Next to CO are hydrocarbons. It is certainly surprising to see that the transport segment's contribution to particulate pollution is as small as 3.5 percent; most of the SPM is created as a result of residual re-suspension from which PM10 is the most visible air poison. NOx is another significant indicator of air quality. Each of these circumstances shows that air contamination is becoming a major issue in the Indian setting and that there is a fundamental need to develop sound condition and increase the level of research around the world. This investigation is a survey of an evaluation model of produced poisons and powerful techniques to reduce air contamination due to street transportation.


2012 ◽  
Vol 12 (14) ◽  
pp. 6335-6355 ◽  
Author(s):  
U. Im ◽  
M. Kanakidou

Abstract. Megacities are large urban agglomerations with intensive anthropogenic emissions that have significant impacts on local and regional air quality. In the present mesoscale modeling study, the impacts of anthropogenic emissions from the Greater Istanbul Area (GIA) and the Greater Athens Area (GAA) on the air quality in GIA, GAA and the entire East Mediterranean are quantified for typical wintertime (December 2008) and summertime (July 2008) conditions. They are compared to those of the regional anthropogenic and biogenic emissions that are also calculated. Finally, the efficiency of potential country-based emissions mitigation in improving air quality is investigated. The results show that relative contributions from both cities to surface ozone (O3) and aerosol levels in the cities' extended areas are generally higher in winter than in summer. Anthropogenic emissions from GIA depress surface O3 in the GIA by ~ 60% in winter and ~ 20% in summer while those from GAA reduce the surface O3 in the GAA by 30% in winter and by 8% in summer. GIA and GAA anthropogenic emissions contribute to the fine particulate matter (PM2.5) levels inside the cities themselves by up to 75% in winter and by 50% (GIA) and ~ 40% (GAA), in summer. GIA anthropogenic emissions have larger impacts on the domain-mean surface O3 (up to 1%) and PM2.5 (4%) levels compared to GAA anthropogenic emissions (<1% for O3 and ≤2% for PM2.5) in both seasons. Impacts of regional anthropogenic emissions on the domain-mean surface pollutant levels (up to 17% for summertime O3 and 52% for wintertime fine particulate matter, PM2.5) are much higher than those from Istanbul and Athens together (~ 1% for O3 and ~ 6% for PM2.5, respectively). Regional biogenic emissions are found to limit the production of secondary inorganic aerosol species in summer up to 13% (non-sea-salt sulfate (nss-SO42−) in rural Athens) due to their impact on oxidant levels while they have negligible impact in winter. Finally, the responses to country-based anthropogenic emission mitigation scenarios inside the studied region show increases in O3 mixing ratios in the urban areas of GIA and GAA, higher in winter (~ 13% for GIA and 2% for GAA) than in summer (~ 7% for GIA and <1% for GAA). On the opposite PM2.5 concentrations decrease by up to 30% in GIA and by 20% in GAA with the highest improvements computed for winter. The emission reduction strategy also leads to domain-wide decreases in most primary pollutants like carbon monoxide (CO) or nitrogen oxides (NOx) for both seasons. The results show the importance of long range transport of pollutants for the air quality in the East Mediterranean. Thus, improvements of air quality in the East Mediterranean require coordinated efforts inside the region and beyond.


Author(s):  
Zhanyong Wang ◽  
Hong-Di He ◽  
Feng Lu ◽  
Qing-Chang Lu ◽  
Zhong-Ren Peng

Air quality time series near road intersections consist of complex linear and nonlinear patterns and are difficult to forecast. The backpropagation neural network (BPNN) has been applied for air quality forecasting in urban areas, but it has limited accuracy because of the inability to predict extreme events. This study proposed a novel hybrid model called GAWNN that combines a genetic algorithm and a wavelet neural network to improve forecast accuracy. The proposed model was examined through predicting the carbon monoxide (CO) and fine particulate matter (PM2.5) concentrations near a road intersection. Before the predictions, principal component analysis was adopted to generate principal components as input variables to reduce data complexity and collinearity. Then the GAWNN model and the BPNN model were implemented. The comparative results indicated that GAWNN provided more reliable and accurate predictions of CO and PM2.5 concentrations. The results also showed that GAWNN performed better than BPNN did in the capability of forecasting extreme concentrations. Furthermore, the spatial transferability of the GAWNN model was reasonably good despite a degenerated performance caused by the unavoidable difference between the training and test sites. These findings demonstrate the potential of the application of the proposed model to forecast the fine-scale trend of air pollution in the vicinity of a road intersection.


2022 ◽  
Author(s):  
Ashwini Sankar ◽  
Andrew Goodkind ◽  
Jay Coggins

Abstract Chronic exposure to ambient fine particulate matter (PM2.5) represents one of the largest global public health risks, leading to millions of premature deaths annually. For a country facing high and spatially variable exposures, prioritizing where to reduce PM2.5 concentrations leads to an inherent tradeoff between saving the most lives and reducing inequality of exposure. This tradeoff results from the shape of the concentration-response function between exposure to PM2.5 and mortality, which indicates that the additional lives saved per unit reduction in PM2.5 declines as concentrations increase. We estimate this concentration-response function for urban areas of India, finding that a 10 unit reduction in PM2.5 in already-clean locations will reduce the mortality rate substantially (4.2% for a reduction from 30 to 20 µgm-3), while a 10 unit reduction in the dirtiest locations will reduce mortality only modestly (1.2% for a reduction from 90 to 80 µgm-3). We explore the implications of this PM2.5/mortality relationship by considering a thought experiment. If India had a fixed amount of resources to devote to PM2.5 concentration reductions across urban areas, what is the lives saved/inequality of exposure tradeoff from three different methods of employing those resources? Across our three scenarios—1) which reduces exposures for the dirtiest districts, 2) which reduces exposures everywhere equally, and 3) which reduces exposures to save the most lives—scenario 1 saves 18,000 lives per year while reducing the inequality of exposure by 65%, while scenario 3 saves 126,000 lives per year, but increases inequality by 19%.


Author(s):  
Alyson McPhetres ◽  
Srijan Aggarwal

The air quality monitoring network in Alaska is currently limited to ground-based observations in urban areas and national parks leaving a large proportion of the state unmonitored. The use of MODIS aerosol optical depth (AOD) to estimate ground-level particulate pollution concentrations has been successfully demonstrated around the world, and could potentially be used in Alaska. In this work, MODIS AOD measurements at 550 nm were validated against AOD derived from AERONET ground-based sunphotometers in Barrow and Bonanza Creek to determine if MODIS AOD from the Terra and Aqua satellites could be used to estimate ground-level particulate pollution concentrations. The MODIS AOD was obtained from MODIS collection 6 using the dark target Land and Ocean algorithms from 2000 to 2014. MODIS data could only be obtained between the months of April and October; therefore, it could only be validated for those months. Individual and combined Terra and Aqua MODIS data were considered. The results showed that MODIS collection 6 products at 10 km resolution for Terra and Aqua combined are not valid over land but are valid over the ocean. On the other hand, the individual Terra and Aqua MODIS collection 6 AOD products at 10 km resolution are valid over land individually but not when combined. Results also suggest the MODIS collection 6 AOD products at 3 km resolution are valid over land and ocean and perform better over land than the 10-km product. These findings indicate that MODIS collection 6 AOD products can be used quantitatively in air quality applications in Alaska during the summer months.


2020 ◽  
Vol 12 (17) ◽  
pp. 7067 ◽  
Author(s):  
Shuai Pan ◽  
Jia Jung ◽  
Zitian Li ◽  
Xuewei Hou ◽  
Anirban Roy ◽  
...  

The COVID-19 pandemic has significantly affected human health and the economy. The implementation of social distancing practices to combat the virus spread, however, has led to a notable improvement in air quality. This study compared the surface air quality monitoring data from the United States Environmental Protection Agency (U.S. EPA)’s AirNow network during the period 20 March–5 May in 2020 to those in 2015–2019 from the Air Quality System (AQS) network over the state of California. The results indicated changes in fine particulate matter (PM2.5) of −2.04 ± 1.57 μg m−3 and ozone of −3.07 ± 2.86 ppb. If the air quality improvements persist over a year, it could potentially lead to 3970–8900 prevented premature deaths annually (note: the estimates of prevented premature deaths have large uncertainties). Public transit demand showed dramatic declines (~80%). The pandemic provides an opportunity to exhibit how substantially human behavior could impact on air quality. To address both the pandemic and climate change issues, better strategies are needed to affect behavior, such as ensuring safer shared mobility, the higher adoption of telecommuting, automation in the freight sector, and cleaner energy transition.


2021 ◽  
Vol 21 (14) ◽  
pp. 11201-11224
Author(s):  
Benjamin A. Nault ◽  
Duseong S. Jo ◽  
Brian C. McDonald ◽  
Pedro Campuzano-Jost ◽  
Douglas A. Day ◽  
...  

Abstract. Anthropogenic secondary organic aerosol (ASOA), formed from anthropogenic emissions of organic compounds, constitutes a substantial fraction of the mass of submicron aerosol in populated areas around the world and contributes to poor air quality and premature mortality. However, the precursor sources of ASOA are poorly understood, and there are large uncertainties in the health benefits that might accrue from reducing anthropogenic organic emissions. We show that the production of ASOA in 11 urban areas on three continents is strongly correlated with the reactivity of specific anthropogenic volatile organic compounds. The differences in ASOA production across different cities can be explained by differences in the emissions of aromatics and intermediate- and semi-volatile organic compounds, indicating the importance of controlling these ASOA precursors. With an improved model representation of ASOA driven by the observations, we attribute 340 000 PM2.5-related premature deaths per year to ASOA, which is over an order of magnitude higher than prior studies. A sensitivity case with a more recently proposed model for attributing mortality to PM2.5 (the Global Exposure Mortality Model) results in up to 900 000 deaths. A limitation of this study is the extrapolation from cities with detailed studies and regions where detailed emission inventories are available to other regions where uncertainties in emissions are larger. In addition to further development of institutional air quality management infrastructure, comprehensive air quality campaigns in the countries in South and Central America, Africa, South Asia, and the Middle East are needed for further progress in this area.


2020 ◽  
Author(s):  
Benjamin A. Nault ◽  
Duseong S. Jo ◽  
Brian C. McDonald ◽  
Pedro Campuzano-Jost ◽  
Douglas A. Day ◽  
...  

Abstract. Anthropogenic secondary organic aerosol (ASOA), formed from anthropogenic emissions of organic compounds, constitutes a substantial fraction of the mass of submicron aerosol in populated areas around the world and contributes to poor air quality and premature mortality. However, the precursor sources of ASOA are poorly understood, and there are large uncertainties in the health benefits that might accrue from reducing anthropogenic organic emissions. We show that the production of ASOA in 11 urban areas on three continents is strongly correlated with the anthropogenic reactivity of specific volatile organic compounds. The differences in ASOA production across different cities can be explained by differences in the emissions of aromatics and intermediate- and semi-volatile organic compounds, indicating the importance of controlling these ASOA precursors. With an improved modeling representation of ASOA driven by the observations, we attribute 340,000 PM2.5 premature deaths per year to ASOA, which is over an order of magnitude higher than prior studies. A sensitivity case with a more recently proposed model for attributing mortality to PM2.5 (the Global Exposure Mortality Model) results up to 900,000 deaths. A limitation of this study is the extrapolation from regions with detailed data to others where data is not available. Comprehensive air quality campaigns in the countries in South and Central America, Africa, South Asia, and the Middle East are needed for further progress in this area.


Sign in / Sign up

Export Citation Format

Share Document