Endogenously Generated and Visually Guided Saccades after Lesions of the Human Frontal Eye Fields

1994 ◽  
Vol 6 (4) ◽  
pp. 400-411 ◽  
Author(s):  
Avishai Henik ◽  
Robert Rafal ◽  
Dell Rhodes

Nine patients with chronic, unilateral lesions of the dorso-lateral prefrontal cortex including the frontal eye fields (FEF) made saccades toward contralesional and ipsilesional fields. The saccades were either voluntarily directed in response to arrows in the center of a visual display, or were reflexively summoned by a peripheral visual signal. Saccade latencies were compared to those made by seven neurologic control patients with chronic, unilateral lesions of dorsolateral prefrontal cortex sparing the FEF, and by 13 normal control subjects. In both the normal and neurologic control subjects, reflexive saccades had shorter Latencies than voluntary saccades. In the FEF lesion patients, voluntary saccades had longer latencies toward the contralesional field than toward the ipsilesional field. The opposite pattern was found for reflexive saccades: latencies of saccades to targets in the contralesional field were shorter than saccades summoned to ipsilesional targets. Reflexive saccades toward the ipsilesional field had abnormally prolonged latencies; they were comparable to the latencies observed for voluntary Saccades. The effect of FEF lesions on saccacles contrasted with those observed in a second experiment requiring a key press response: FEF lesion patients were slower in making key press responses to signals detected in the contralesional field. To assess covert attention and preparatory set the effects of precues providing advance information were measured in both saccade and key press experiments. Neither patient group showed any deficiency in using precues to shift attention or to prepare saccades. The FEF facilitates the generation of voluntary saccatles and also inhibits reflexive saccades to exogenous signals. FEF lesions may disinhibit the ipsilesional midbrain which in turn may inhibit the opposite colliculus to slow reflexive saccades toward the ipsilesional field.

2005 ◽  
Vol 16 (4) ◽  
pp. 235-242 ◽  
Author(s):  
Astrid von Bueren Jarchow ◽  
Bogdan P. Radanov ◽  
Lutz Jäncke

Abstract: The aim of the present study was to examine to what extent chronic pain has an impact on various attentional processes. To measure these attention processes a set of experimental standard tests of the “Testbatterie zur Aufmerksamkeitsprüfung” (TAP), a neuropsychological battery testing different levels of attention, were used: alertness, divided attention, covert attention, vigilance, visual search, and Go-NoGo tasks. 24 chronic outpatients and 24 well-matched healthy control subjects were tested. The control subjects were matched for age, gender, and education. The group of chronic pain patients exhibited marked deficiencies in all attentional functions except for the divided attention task. Thus, the data supports the notion that chronic pain negatively influences attention because pain patients` attention is strongly captivated by the internal pain stimuli. Only the more demanding divided attention task has the capability to distract the focus of attention to the pain stimuli. Therefore, the pain patients are capable of performing within normal limits. Based on these findings chronic pain patients' attentional deficits should be appropriately evaluated and considered for insurance and work related matters. The effect of a successful distraction away from the pain in the divided attention task can also open new therapeutic aspects.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Amira Ben Afia ◽  
Èlia Vila ◽  
Karina S. MacDowell ◽  
Aida Ormazabal ◽  
Juan C. Leza ◽  
...  

Abstract Background The cortico-cerebellar-thalamic-cortical circuit has been implicated in the emergence of psychotic symptoms in schizophrenia (SZ). The kynurenine pathway (KP) has been linked to alterations in glutamatergic and monoaminergic neurotransmission and to SZ symptomatology through the production of the metabolites quinolinic acid (QA) and kynurenic acid (KYNA). Methods This work describes alterations in KP in the post-mortem prefrontal cortex (PFC) and cerebellum (CB) of 15 chronic SZ patients and 14 control subjects in PFC and 13 control subjects in CB using immunoblot for protein levels and ELISA for interleukins and QA and KYNA determinations. Monoamine metabolites were analysed by high-performance liquid chromatography and SZ symptomatology was assessed by Positive and Negative Syndrome Scale (PANSS). The association of KP with inflammatory mediators, monoamine metabolism and SZ symptomatology was explored. Results In the PFC, the presence of the anti-inflammatory cytokine IL-10 together with IDO2 and KATII enzymes decreased in SZ, while TDO and KMO enzyme expression increased. A network interaction analysis showed that in the PFC IL-10 was coupled to the QA branch of the kynurenine pathway (TDO-KMO-QA), whereas IL-10 associated with KMO in CB. KYNA in the CB inversely correlated with negative and general PANSS psychopathology. Although there were no changes in monoamine metabolite content in the PFC in SZ, a network interaction analysis showed associations between dopamine and methoxyhydroxyphenylglycol degradation metabolite. Direct correlations were found between general PANSS psychopathology and the serotonin degradation metabolite, 5-hydroxyindoleacetic acid. Interestingly, KYNA in the CB inversely correlated with 5-hydroxyindoleacetic acid in the PFC. Conclusions Thus, this work found alterations in KP in two brain areas belonging to the cortico-cerebellar-thalamic-cortical circuit associated with SZ symptomatology, with a possible impact across areas in 5-HT degradation.


1998 ◽  
Vol 172 (4) ◽  
pp. 316-323 ◽  
Author(s):  
Sean A. Spence ◽  
Steven R. Hirsch ◽  
David J. Brooks ◽  
Paul M. Grasby

BackgroundHypo-activation of the left dorsolateral prefrontal cortex is inconsistently found in neuroimaging studies of schizophrenia. As the left dorsolateral prefrontal cortex is involved in the generation of action, disordered function in this region may be implicated in schizophrenic symptomatology.MethodWe used H215O positron emission tomography to study dorsolateral prefrontal cortical function in men with schizophrenia (n=13) and male control subjects (n=6) performing joystick movements on two occasions, 4–6 weeks apart. The patients were initially in relapse. To clarify dorsolateral prefrontal cortical function we also scanned another group of control subjects (n=5) performing mouth movements.ResultsThe control subjects performing hand or mouth movements activated the left dorsolateral prefrontal cortex to a maximum when the movements were self-selected. The men with relapsed schizophrenia exhibited left dorsolateral prefrontal cortical hypo-activation, which remitted with symptomatic improvement.ConclusionsHypofrontality in these patients is a dynamic phenomenon across time, possibly related to current symptomatology. The most appropriate question about the presence of hypofrontality in schizophrenia may be when, rather than whether, it will occur.


2008 ◽  
Vol 86 (4) ◽  
pp. 253-259 ◽  
Author(s):  
Sean E. Walker ◽  
J. Andrew Roberts ◽  
Israel Adame ◽  
Corey J. Collins ◽  
Daniel Lim

Many species are sexually dimorphic because of differential selection on each sex. In many species, males tend to have exaggerated traits or larger body size compared with females. In house crickets ( Acheta domesticus L., 1758), the males defend resources and compete for mates by engaging in a striking visual display sequence that includes mandible flaring, where males spread their mandibles wide open. This behavior presumably acts only in males as a visual signal of body size and as an indicator of the willingness to fight, as females do not exhibit this behavior. We tested the hypothesis that sex differences in the signals used for aggressive interactions will lead to sex differences in the morphology of the head in house crickets. To test this hypothesis we made linear measurements of body and head sizes on males and females and utilized geometric morphometric methods to reconstruct sex differences in shape. We also compared the total pigmented area of the faces of males and females. Males had larger heads with proportionally more pigmented area than females and there were significant shape differences. In addition, allometric relationships between head size and body size indicated that head size increases faster than body size in males. Geometric morphometric analysis indicated that the shape differences result in an exaggeration of the mandibular area in males compared with females. These data suggest that the differential selection acting on males and females can lead to differences in size, shape, and pigmentation related to signal structure and function.


2001 ◽  
Vol 13 (6) ◽  
pp. 721-729 ◽  
Author(s):  
E. Sumie Funayama ◽  
Christian Grillon ◽  
Michael Davis ◽  
Elizabeth A. Phelps

In the present study we report a double dissociation between right and left medial temporal lobe damage in the modulation of fear responses to different types of stimuli. We found that right unilateral temporal lobectomy (RTL) patients, in contrast to control subjects and left temporal lobectomy (LTL) patients, failed to show potentiated startle while viewing negative pictures. However, the opposite pattern of impairment was observed during a stimulus that patients had been told signaled the possibility of shock. Control subjects and RTL patients showed potentiated startle while LTL patients failed to show potentiated startle. We hypothesize that the right medial temporal lobe modulates fear responses while viewing emotional pictures, which involves exposure to (emotional) visual information and is consistent with the emotional processing traditionally ascribed to the right hemisphere. In contrast, the left medial temporal lobe modulates fear responses when those responses are the result of a linguistic/cognitive representation acquired through language, which, like other verbally mediated material, generally involves the left hemisphere. Additional evidence from case studies suggests that, within the medial temporal lobe, the amygdala is responsible for this modulation.


2020 ◽  
Author(s):  
Daniel Francisco Ramos ◽  
Edna Madai Mendez ◽  
José Manuel Salas ◽  
Alma Cristina Salas ◽  
Norma Urtiz ◽  
...  

Abstract Background: Suicide is a major public health concern that has been associated with several neurobiological abnormalities, including dysfunction of the serotonin (5-HT) neurotransmission system. The serotonin 2A receptor (5-HT 2A ) and the monoamine oxidase A enzyme (MAO-A), which is responsible for degrading 5-HT, are encoded by the HTR2A and MAOA genes, respectively. These genes have been associated with several psychiatric disorders and an increased risk for suicide. Methods: Our study examined the expression levels of HTR2A and MAOA genes in the postmortem prefrontal cortex (Brodmann area 8/9) and hypothalamus (ventromedial nucleus) tissues from 15 suicide victims and 15 control subjects from a Mexican population. Gene-expression profile quantification was carried out by qPCR and determined by the method. Results: In suicide victims, the expression levels of the HTR2A gene were significantly higher in the prefrontal cortex. In contrast, the expression of the MAOA gene in the hypothalamus of the suicide victims was significantly higher than in the control subjects. When comparing adult controls against adult suicidal victims (25-59 year-old age group), a significant decrease in HTR2A expression in the hypothalamus was observed. These results were consistent regardless of age, sex, postmortem interval, or pH of brain tissue. Conclusions: The evidence suggests that the pattern of differential expression of the HTR2A and MAOA genes in the brain may be involved in suicide, providing a possible molecular basis for the brain abnormalities in suicide victims.


2021 ◽  
Author(s):  
Amira Ben Afia ◽  
Èlia Vila ◽  
Karina S. MacDowell ◽  
Aida Ormazabal ◽  
Juan Carlos Leza ◽  
...  

AbstractBackgroundthe cortico-cerebellar-thalamic-cortical circuit has been implicated in the emergence of psychotic symptoms in schizophrenia (SZ). The kynurenine pathway (KP) has been linked to alterations in glutamatergic and monoaminergic neurotransmission and to SZ symptomatology through the production of the metabolites quinolinic acid (QA) and kynurenic acid (KYNA).Methodsthis work describes alterations in KP in the post-mortem prefrontal cortex (PFC) and cerebellum (CB) of 15 chronic SZ patients and 14 control subjects in PFC and 13 control subjects in CB using immunoblot for protein levels and ELISA for interleukins and QA and KYNA determinations. Monoamine metabolites were analysed by High Performance Liquid Chromatography and SZ symptomatology was assessed by Positive and Negative Syndrome Scale (PANSS). The association of KP with inflammatory mediators, monoamine metabolism and SZ symptomatology was explored.Resultsin the PFC, the presence of the anti-inflammatory cytokine IL-10 together with IDO2 and KATII enzymes decreased in SZ, while TDO and KMO enzymes expression increased. A network interaction analysis showed that in the PFC IL-10 was coupled to the QA branch of the kynurenine pathway (TDO-KMO-QA), whereas IL-10 associated with KMO in CB. KYNA in the CB inversely correlated with negative and general PANSS psychopathology. Although there were no changes in monoamine metabolites content in the PFC in SZ, a network interaction analysis showed associations between dopamine and methoxyhydroxyphenylglycol degradation metabolite. Direct correlations were found between general PANSS psychopathology and the serotonin degradation metabolite, 5-hydroxyindoleacetic acid. Interestingly, KYNA in the CB inversely correlated with 5-hydroxyindoleacetic acid in the PFC.Conclusionsthus, this work found alterations in KP in two brain areas belonging to the cortico-cerebellar-thalamic-cortical circuit associated with SZ symptomatology, with a possible impact across areas in 5-HT degradation.


2018 ◽  
Vol 285 (1878) ◽  
pp. 20180713 ◽  
Author(s):  
Kelly L. Ronald ◽  
Esteban Fernández-Juricic ◽  
Jeffrey R. Lucas

A common assumption in sexual selection studies is that receivers decode signal information similarly. However, receivers may vary in how they rank signallers if signal perception varies with an individual's sensory configuration. Furthermore, receivers may vary in their weighting of different elements of multimodal signals based on their sensory configuration. This could lead to complex levels of selection on signalling traits. We tested whether multimodal sensory configuration could affect preferences for multimodal signals. We used brown-headed cowbird ( Molothrus ater ) females to examine how auditory sensitivity and auditory filters, which influence auditory spectral and temporal resolution, affect song preferences, and how visual spatial resolution and visual temporal resolution, which influence resolution of a moving visual signal, affect visual display preferences. Our results show that multimodal sensory configuration significantly affects preferences for male displays: females with better auditory temporal resolution preferred songs that were shorter, with lower Wiener entropy, and higher frequency; and females with better visual temporal resolution preferred males with less intense visual displays. Our findings provide new insights into mate-choice decisions and receiver signal processing. Furthermore, our results challenge a long-standing assumption in animal communication which can affect how we address honest signalling, assortative mating and sensory drive.


Sign in / Sign up

Export Citation Format

Share Document