scholarly journals Domain-general Signals in the Cingulo-opercular Network for Visuospatial Attention and Episodic Memory

2014 ◽  
Vol 26 (3) ◽  
pp. 551-568 ◽  
Author(s):  
Carlo Sestieri ◽  
Maurizio Corbetta ◽  
Sara Spadone ◽  
Gian Luca Romani ◽  
Gordon L. Shulman

We investigated the functional properties of a previously described cingulo-opercular network (CON) putatively involved in cognitive control. Analyses of common fMRI task-evoked activity during perceptual and episodic memory search tasks that differently recruited the dorsal attention (DAN) and default mode network (DMN) established the generality of this network. Regions within the CON (anterior insula/frontal operculum and anterior cingulate/presupplementary cortex) displayed sustained signals during extended periods in which participants searched for behaviorally relevant information in a dynamically changing environment or from episodic memory in the absence of sensory stimulation. The CON was activated during all phases of both tasks, which involved trial initiation, target detection, decision, and response, indicating its consistent involvement in a broad range of cognitive processes. Functional connectivity analyses showed that the CON flexibly linked with the DAN or DMN regions during perceptual or memory search, respectively. Aside from the CON, only a limited number of regions, including the lateral pFC, showed evidence of domain-general sustained activity, although in some cases the common activations may have reflected the functional-anatomical variability of domain-specific regions rather than a true domain generality. These additional regions also showed task-dependent functional connectivity with the DMN and DAN, suggesting that this feature is not a specific marker of cognitive control. Finally, multivariate clustering analyses separated the CON from other frontoparietal regions previously associated with cognitive control, indicating a unique fingerprint. We conclude that the CON's functional properties and interactions with other brain regions support a broad role in cognition, consistent with its characterization as a task control network.

2017 ◽  
Author(s):  
Kai Hwang ◽  
James M. Shine ◽  
Mark D’Esposito

AbstractFlexible interaction between brain regions enables neural systems to transfer and process information adaptively for goal-directed behaviors. In the current study, we investigated neural substrates that interact with task-evoked functional connectivity during cognitive control. We conducted a human fMRI study where participants selectively attended to a category of visual stimuli in the presence of competing distractors from another stimulus category. To study flexible interactions between brain regions, we performed a dynamic functional connectivity analysis to estimate temporal changes in connectivity strength between brain regions under different levels of cognitive control. Consistent with theoretical predictions, we found that cognitive control selectively enhances functional connectivity for prioritizing the processing of task-relevant information. By regressing temporal changes in connectivity strength against activity patterns elsewhere in the brain, we localized frontal and parietal regions that potentially provide top-down biasing signals for influencing, or reading information out from, task-evoked functional connectivity. Our results suggest that in addition to modulating local activity, fronto-parietal regions could also exert top-down biasing signals to influence functional connectivity between distributed brain regions.


2018 ◽  
Author(s):  
Christiane Oedekoven ◽  
James L. Keidel ◽  
Stuart Anderson ◽  
Angus Nisbet ◽  
Chris Bird

Despite their severely impaired episodic memory, individuals with amnesia are able to comprehend ongoing events. Online representations of a current event are thought to be supported by a network of regions centred on the posterior midline cortex (PMC). By contrast, episodic memory is widely believed to be supported by interactions between the hippocampus and these cortical regions. In this MRI study, we investigated the encoding and retrieval of lifelike events (video clips) in a patient with severe amnesia likely resulting from a stroke to the right thalamus, and a group of 20 age-matched controls. Structural MRI revealed grey matter reductions in left hippocampus and left thalamus in comparison to controls. We first characterised the regions activated in the controls while they watched and retrieved the videos. There were no differences in activation between the patient and controls in any of the regions. We then identified a widespread network of brain regions, including the hippocampus, that were functionally connected with the PMC in controls. However, in the patient there was a specific reduction in functional connectivity between the PMC and a region of left hippocampus when both watching and attempting to retrieve the videos. A follow up analysis revealed that in controls the functional connectivity between these regions when watching the videos was correlated with memory performance. Taken together, these findings support the view that the interactions between the PMC and the hippocampus enable the encoding and retrieval of multimodal representations of the contents of an event.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Stephen J. Kohut ◽  
Dionyssios Mintzopoulos ◽  
Brian D. Kangas ◽  
Hannah Shields ◽  
Kelly Brown ◽  
...  

AbstractLong-term cocaine use is associated with a variety of neural and behavioral deficits that impact daily function. This study was conducted to examine the effects of chronic cocaine self-administration on resting-state functional connectivity of the dorsal anterior cingulate (dACC) and putamen—two brain regions involved in cognitive function and motoric behavior—identified in a whole brain analysis. Six adult male squirrel monkeys self-administered cocaine (0.32 mg/kg/inj) over 140 sessions. Six additional monkeys that had not received any drug treatment for ~1.5 years served as drug-free controls. Resting-state fMRI imaging sessions at 9.4 Tesla were conducted under isoflurane anesthesia. Functional connectivity maps were derived using seed regions placed in the left dACC or putamen. Results show that cocaine maintained robust self-administration with an average total intake of 367 mg/kg (range: 299–424 mg/kg). In the cocaine group, functional connectivity between the dACC seed and regions primarily involved in motoric behavior was weaker, whereas connectivity between the dACC seed and areas implicated in reward and cognitive processing was stronger. In the putamen seed, weaker widespread connectivity was found between the putamen and other motor regions as well as with prefrontal areas that regulate higher-order executive function; stronger connectivity was found with reward-related regions. dACC connectivity was associated with total cocaine intake. These data indicate that functional connectivity between regions involved in motor, reward, and cognitive processing differed between subjects with recent histories of cocaine self-administration and controls; in dACC, connectivity appears to be related to cumulative cocaine dosage during chronic exposure.


2020 ◽  
Vol 32 (6) ◽  
pp. 1026-1045 ◽  
Author(s):  
Dina R. Dajani ◽  
Paola Odriozola ◽  
Melanie Winters ◽  
Willa Voorhies ◽  
Selene Marcano ◽  
...  

Cognitive flexibility, the ability to appropriately adjust behavior in a changing environment, has been challenging to operationalize and validate in cognitive neuroscience studies. Here, we investigate neural activation and directed functional connectivity underlying cognitive flexibility using an fMRI-adapted version of the Flexible Item Selection Task (FIST) in adults ( n = 32, ages 19–46 years). The fMRI-adapted FIST was reliable, showed comparable performance to the computer-based version of the task, and produced robust activation in frontoparietal, anterior cingulate, insular, and subcortical regions. During flexibility trials, participants directly engaged the left inferior frontal junction, which influenced activity in other cortical and subcortical regions. The strength of intrinsic functional connectivity between select brain regions was related to individual differences in performance on the FIST, but there was also significant individual variability in functional network topography supporting cognitive flexibility. Taken together, these results suggest that the FIST is a valid measure of cognitive flexibility, which relies on computations within a broad corticosubcortical network driven by inferior frontal junction engagement.


2013 ◽  
Vol 25 (2) ◽  
pp. 219-233 ◽  
Author(s):  
Emilie T. Reas ◽  
James B. Brewer

Neuroimaging studies of episodic memory retrieval have revealed activations in the human frontal, parietal, and medial-temporal lobes that are associated with memory strength. However, it remains unclear whether these brain responses are veritable signals of memory strength or are instead regulated by concomitant subcomponents of retrieval such as retrieval effort or mental search. This study used event-related fMRI during cued recall of previously memorized word-pair associates to dissociate brain responses modulated by memory search from those modulated by the strength of a recalled memory. Search-related deactivations, dissociated from activity due to memory strength, were observed in regions of the default network, whereas distinctly strength-dependent activations were present in superior and inferior parietal and dorsolateral PFC. Both search and strength regulated activity in dorsal anterior cingulate and anterior insula. These findings suggest that, although highly correlated and partially subserved by overlapping cognitive control mechanisms, search and memory strength engage dissociable regions of frontoparietal attention and default networks.


2018 ◽  
Vol 3 (2) ◽  
pp. 59-64
Author(s):  
Xiping Liu ◽  
Yasutomo Imai ◽  
Yan Zhou ◽  
Sebastian Yu ◽  
Rupeng Li ◽  
...  

Functional connectivity magnetic resonance imaging (fcMRI), a specific form of MRI imaging, quantitatively assesses connectivity between brain regions that share functional properties. Functional connectivity magnetic resonance imaging has already provided unique insights into changes in the brain in patients with conditions such as depression and pain and symptoms that have been reported by patients with psoriasis and are known to impact quality of life. To identify the central neurological impact of psoriasiform inflammation of the skin, we applied fcMRI analysis to mice that had been topically treated with the Toll-like receptor agonist, imiquimod (IMQ) to induce psoriasiform dermatitis. Brain insula regions, due to their suggested role in stress, were chosen as seed regions for fcMRI analysis. Mouse ear and head skin developed psoriasiform epidermal thickening (up to 4-fold, P < .05) and dermal inflammation after 4 days of topical treatment with IMQ. After fcMRI analysis, IMQ-treated mice showed significantly increased insula fc with wide areas throughout the brain, including, but not limited to, the somatosensory cortex, anterior cingulate cortex, and caudate putamen ( P < .005). This reflects a potential central neurological impact of IMQ-induced psoriasis-like skin inflammation. These data indicate that fcMRI may be valuable tool to quantitatively assess the neurological impact of skin inflammation in patients with psoriasis.


2007 ◽  
Vol 19 (6) ◽  
pp. 945-956 ◽  
Author(s):  
Ethan Kross ◽  
Tobias Egner ◽  
Kevin Ochsner ◽  
Joy Hirsch ◽  
Geraldine Downey

Rejection sensitivity (RS) is the tendency to anxiously expect, readily perceive, and intensely react to rejection. This study used functional magnetic resonance imaging to explore whether individual differences in RS are mediated by differential recruitment of brain regions involved in emotional appraisal and/or cognitive control. High and low RS participants were scanned while viewing either representational paintings depicting themes of rejection and acceptance or nonrepresentational control paintings matched for positive or negative valence, arousal and interest level. Across all participants, rejection versus acceptance images activated regions of the brain involved in processing affective stimuli (posterior cingulate, insula), and cognitive control (dorsal anterior cingulate cortex; medial frontal cortex). Low and high RS individuals' responses to rejection versus acceptance images were not, however, identical. Low RS individuals displayed significantly more activity in left inferior and right dorsal frontal regions, and activity in these areas correlated negatively with participants' self-report distress ratings. In addition, control analyses revealed no effect of viewing negative versus positive images in any of the areas described above, suggesting that the aforementioned activations were involved in rejection-relevant processing rather than processing negatively valenced stimuli per se. Taken together, these findings suggest that responses in regions traditionally implicated in emotional processing and cognitive control are sensitive to rejection stimuli irrespective of RS, but that low RS individuals may activate prefrontal structures to regulate distress associated with viewing such images.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicole Steinhardt ◽  
Ramana Vishnubhotla ◽  
Yi Zhao ◽  
David M. Haas ◽  
Gregory M. Sokol ◽  
...  

Purpose: Infants of mothers with opioid and substance use can present with postnatal withdrawal symptoms and are at risk of poor neurodevelopmental outcomes in later childhood. Identifying methods to evaluate the consequences of substance exposure on the developing brain can help initiate proactive therapies to improve outcomes for opioid-exposed neonates. Additionally, early brain imaging in infancy has the potential to identify early brain developmental alterations that could prognosticate neurodevelopmental outcomes in these children. In this study, we aim to identify differences in global brain network connectivity in infants with prenatal opioid exposure compared to healthy control infants, using resting-state functional MRI performed at less than 2 months completed gestational age.   Materials and Methods: In this prospective, IRB-approved study, we recruited 20 infants with prenatal opioid exposure and 20 healthy, opioid naïve infants. Anatomic imaging and resting-state functional MRI were performed at less than 48 weeks corrected gestational age, and rs-fMRI images were co-registered to the UNC neonate brain template and 90 anatomic atlas-labelled regions. Covariate Assisted Principal (CAP) regression was performed to identify brain network functional connectivity that was significantly different among infants with prenatal opioid exposure compared to healthy neonates.   Results: Of the 5 significantly different CAP components identified, the most distinct component (CAP5, p= 3.86 x 10-6) spanned several brain regions, including the right inferior temporal gyrus, bilateral Hesch’s gyrus, left thalamus, left supramarginal gyrus, left inferior parietal lobule, left superior parietal gyrus, right anterior cingulate gyrus, right gyrus rectus, left supplementary motor area, and left pars triangularis. Functional connectivity in this network was lower in the infants with prenatal opioid exposure compared to non-opioid exposed infants.   Conclusion: This study demonstrates global network alterations in infants with prenatal opioid exposure compared to non-opioid exposed infants. Future studies should be aimed at identifying clinical significance of this altered connectivity.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261334
Author(s):  
Chizuko Hamada ◽  
Toshikazu Kawagoe ◽  
Masahiro Takamura ◽  
Atsushi Nagai ◽  
Shuhei Yamaguchi ◽  
...  

Apathy is defined as reduction of goal-directed behaviors and a common nuisance syndrome of neurodegenerative and psychiatric disease. The underlying mechanism of apathy implicates changes of the front-striatal circuit, but its precise alteration is unclear for apathy in healthy aged people. The aim of our study is to investigate how the frontal-striatal circuit is changed in elderly with apathy using resting-state functional MRI. Eighteen subjects with apathy (7 female, 63.7 ± 3.0 years) and eighteen subjects without apathy (10 female, 64.8 ± 3.0 years) who underwent neuropsychological assessment and MRI measurement were recruited. We compared functional connectivity with/within the striatum between the apathy and non-apathy groups. The seed-to-voxel group analysis for functional connectivity between the striatum and other brain regions showed that the connectivity was decreased between the ventral rostral putamen and the right dorsal anterior cingulate cortex/supplementary motor area in the apathy group compared to the non-apathy group while the connectivity was increased between the dorsal caudate and the left sensorimotor area. Moreover, the ROI-to-ROI analysis within the striatum indicated reduction of functional connectivity between the ventral regions and dorsal regions of the striatum in the apathy group. Our findings suggest that the changes in functional connectivity balance among different frontal-striatum circuits contribute to apathy in elderly.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0247100
Author(s):  
Mo Chen ◽  
Fengyang Ma ◽  
Zhaoqi Zhang ◽  
Shuhua Li ◽  
Man Zhang ◽  
...  

Bilingual language experience, such as switching between languages, has been shown to shape both cognitive and neural mechanisms of non-linguistic cognitive control. However, the neural adaptations induced by language switching remain unclear. Using fMRI, the current study examined the impact of short-term language switching training on the neural network of domain-general cognitive control for unbalanced Chinese-English bilinguals. Effective connectivity maps were constructed by using the extended unified structural equation models (euSEM) within 10 common brain regions involved in both language control and domain-general cognitive control. Results showed that, the dorsal anterior cingulate cortex/pre-supplementary motor area (dACC/pre-SMA) lost connection from the right thalamus after training, suggesting that less neural connectivity was required to complete the same domain-general cognitive control task. These findings not only provide direct evidence for the modulation of language switching training on the neural interaction of domain-general cognitive control, but also have important implications for revealing the potential neurocognitive adaptation effects of specific bilingual language experiences.


Sign in / Sign up

Export Citation Format

Share Document