scholarly journals Frontostriatal Contribution to the Interplay of Flexibility and Stability in Serial Prediction

2017 ◽  
Vol 29 (2) ◽  
pp. 298-309 ◽  
Author(s):  
Ima Trempler ◽  
Anne-Marike Schiffer ◽  
Nadiya El-Sourani ◽  
Christiane Ahlheim ◽  
Gereon R. Fink ◽  
...  

Surprising events may be relevant or irrelevant for behavior, requiring either flexible adjustment or stabilization of our model of the world and according response strategies. Cognitive flexibility and stability in response to environmental demands have been described as separable cognitive states, associated with activity of striatal and lateral prefrontal regions, respectively. It so far remains unclear, however, whether these two states act in an antagonistic fashion and which neural mechanisms mediate the selection of respective responses, on the one hand, and a transition between these states, on the other. In this study, we tested whether the functional dichotomy between striatal and prefrontal activity applies for the separate functions of updating (in response to changes in the environment, i.e., switches) and shielding (in response to chance occurrences of events violating expectations, i.e., drifts) of current predictions. We measured brain activity using fMRI while 20 healthy participants performed a task that required to serially predict upcoming items. Switches between predictable sequences had to be indicated via button press while sequence omissions (drifts) had to be ignored. We further varied the probability of switches and drifts to assess the neural network supporting the transition between flexible and stable cognitive states as a function of recent performance history in response to environmental demands. Flexible switching between models was associated with activation in medial pFC (BA 9 and BA 10), whereas stable maintenance of the internal model corresponded to activation in the lateral pFC (BA 6 and inferior frontal gyrus). Our findings extend previous studies on the interplay of flexibility and stability, suggesting that different prefrontal regions are activated by different types of prediction errors, dependent on their behavioral requirements. Furthermore, we found that striatal activation in response to switches and drifts was modulated by participants' successful behavior toward these events, suggesting the striatum to be responsible for response selections following unpredicted stimuli. Finally, we observed that the dopaminergic midbrain modulates the transition between different cognitive states, thresholded by participants' individual performance history in response to temporal environmental demands.

2019 ◽  
Vol 31 (12) ◽  
pp. 1917-1932 ◽  
Author(s):  
Betina Korka ◽  
Erich Schröger ◽  
Andreas Widmann

We act on the environment to produce desired effects, but we also adapt to the environmental demands by learning what to expect next, based on experience: How do action-based predictions and sensory predictions relate to each other? We explore this by implementing a self-generation oddball paradigm, where participants performed random sequences of left and right button presses to produce frequent standard and rare deviant tones. By manipulating the action–tone association as well as the likelihood of a button press over the other one, we compare ERP effects evoked by the intention to produce a specific tone, tone regularity, and both intention and regularity. We show that the N1b and Tb components of the N1 response are modulated by violations of tone regularity only. However, violations of action intention as well as of regularity elicit MMN responses, which occur similarly in all three conditions. Regardless of whether the predictions at sensory levels were based on either intention, regularity, or both, the tone deviance was further and equally well detected at hierarchically higher processing level, as reflected in similar P3a effects between conditions. We did not observe additive prediction errors when intention and regularity were violated concurrently, suggesting the two integrate despite presumably having independent generators. Even though they are often discussed as individual prediction sources in the literature, this study represents to our knowledge the first to directly compare them. Finally, these results show how, in the context of action, our brain can easily switch between top–down intention-based expectations and bottom–up regularity cues to efficiently predict future events.


2016 ◽  
Author(s):  
Timothy N. Rubin ◽  
Oluwasanmi Koyejo ◽  
Krzysztof J. Gorgolewski ◽  
Michael N. Jones ◽  
Russell A. Poldrack ◽  
...  

AbstractA central goal of cognitive neuroscience is to decode human brain activity--i.e., to infer mental processes from observed patterns of whole-brain activation. Previous decoding efforts have focused on classifying brain activity into a small set of discrete cognitive states. To attain maximal utility, a decoding framework must be open-ended, systematic, and context-sensitive--i.e., capable of interpreting numerous brain states, presented in arbitrary combinations, in light of prior information. Here we take steps towards this objective by introducing a Bayesian decoding framework based on a novel topic model---Generalized Correspondence Latent Dirichlet Allocation---that learns latent topics from a database of over 11,000 published fMRI studies. The model produces highly interpretable, spatially-circumscribed topics that enable flexible decoding of whole-brain images. Importantly, the Bayesian nature of the model allows one to “seed” decoder priors with arbitrary images and text--enabling researchers, for the first time, to generative quantitative, context-sensitive interpretations of whole-brain patterns of brain activity.


2019 ◽  
Author(s):  
A. Wiehler ◽  
K. Chakroun ◽  
J. Peters

AbstractGambling disorder is a behavioral addiction associated with impairments in decision-making and reduced behavioral flexibility. Decision-making in volatile environments requires a flexible trade-off between exploitation of options with high expected values and exploration of novel options to adapt to changing reward contingencies. This classical problem is known as the exploration-exploitation dilemma. We hypothesized gambling disorder to be associated with a specific reduction in directed (uncertainty-based) exploration compared to healthy controls, accompanied by changes in brain activity in a fronto-parietal exploration-related network.Twenty-three frequent gamblers and nineteen matched controls performed a classical four-armed bandit task during functional magnetic resonance imaging. Computational modeling revealed that choice behavior in both groups contained signatures of directed exploration, random exploration and perseveration. Gamblers showed a specific reduction in directed exploration, while random exploration and perseveration were similar between groups.Neuroimaging revealed no evidence for group differences in neural representations of expected value and reward prediction errors. Likewise, our hypothesis of attenuated fronto-parietal exploration effects in gambling disorder was not supported. However, during directed exploration, gamblers showed reduced parietal and substantia nigra / ventral tegmental area activity. Cross-validated classification analyses revealed that connectivity in an exploration-related network was predictive of clinical status, suggesting alterations in network dynamics in gambling disorder.In sum, we show that reduced flexibility during reinforcement learning in volatile environments in gamblers is attributable to a reduction in directed exploration rather than an increase in perseveration. Neuroimaging findings suggest that patterns of network connectivity might be more diagnostic of gambling disorder than univariate value and prediction error effects. We provide a computational account of flexibility impairments in gamblers during reinforcement learning that might arise as a consequence of dopaminergic dysregulation in this disorder.


2009 ◽  
Vol 21 (10) ◽  
pp. 2007-2018 ◽  
Author(s):  
Marcus Meinzer ◽  
Tobias Flaisch ◽  
Lotte Wilser ◽  
Carsten Eulitz ◽  
Brigitte Rockstroh ◽  
...  

As we age, our ability to select and to produce words changes, yet we know little about the underlying neural substrate of word-finding difficulties in old adults. This study was designed to elucidate changes in specific frontally mediated retrieval processes involved in word-finding difficulties associated with advanced age. We implemented two overt verbal (semantic and phonemic) fluency tasks during fMRI and compared brain activity patterns of old and young adults. Performance during the phonemic task was comparable for both age groups and mirrored by strongly left-lateralized (frontal) activity patterns. On the other hand, a significant drop of performance during the semantic task in the older group was accompanied by additional right (inferior and middle) frontal activity, which was negatively correlated with performance. Moreover, the younger group recruited different subportions of the left inferior frontal gyrus for both fluency tasks, whereas the older participants failed to show this distinction. Thus, functional integrity and efficient recruitment of left frontal language areas seems to be critical for successful word retrieval in old age.


2020 ◽  
Vol 61 (10) ◽  
pp. 1388-1397
Author(s):  
Yi Cheng ◽  
Li Yan ◽  
Liqun Hu ◽  
Hongyun Wu ◽  
Xin Huang ◽  
...  

Background Previous studies have linked high myopia (HM) to brain activity, and the difference between HM and low myopia (LM) can be assessed. Purpose To study the differences in functional networks of brain activity between HM and LM by the voxel-level degree centrality (DC) method. Material and Methods Twenty-eight patients with HM (10 men, 18 women), 18 patients with LM (4 men, 14 women), and 59 healthy controls (27 men, 32 women) were enrolled in this study. The voxel-level DC method was used to assess spontaneous brain activity. Correlation analysis was used to explore the change of average DC value in different brain regions, in order to analyze differences in brain activity between HM and LM. Results DC values of the right cerebellum anterior lobe/brainstem, right parahippocampal gyrus, and left caudate in HM patients were significantly higher than those in LM patients ( P < 0.05). In contrast, DC values of the left medial frontal gyrus, right inferior frontal gyrus, left middle frontal gyrus, and left inferior parietal lobule were significantly lower in patients with HM ( P < 0.05). However, there was no correlation between behavior and average DC values in different brain regions ( P < 0.05). Conclusion Different changes in brain regions between HM and LM may indicate differences in neural mechanisms between HM and LM. DC values could be useful as biomarkers for differences in brain activity between patients with HM and LM. This study provides a new method to assess differences in functional networks of brain activity between patients with HM and LM.


2020 ◽  
Vol 11 ◽  
Author(s):  
Wanghuan Dun ◽  
Tongtong Fan ◽  
Qiming Wang ◽  
Ke Wang ◽  
Jing Yang ◽  
...  

Empathy refers to the ability to understand someone else's emotions and fluctuates with the current state in healthy individuals. However, little is known about the neural network of empathy in clinical populations at different pain states. The current study aimed to examine the effects of long-term pain on empathy-related networks and whether empathy varied at different pain states by studying primary dysmenorrhea (PDM) patients. Multivariate partial least squares was employed in 46 PDM women and 46 healthy controls (HC) during periovulatory, luteal, and menstruation phases. We identified neural networks associated with different aspects of empathy in both groups. Part of the obtained empathy-related network in PDM exhibited a similar activity compared with HC, including the right anterior insula and other regions, whereas others have an opposite activity in PDM, including the inferior frontal gyrus and right inferior parietal lobule. These results indicated an abnormal regulation to empathy in PDM. Furthermore, there was no difference in empathy association patterns in PDM between the pain and pain-free states. This study suggested that long-term pain experience may lead to an abnormal function of the brain network for empathy processing that did not vary with the pain or pain-free state across the menstrual cycle.


2005 ◽  
Vol 93 (3) ◽  
pp. 1498-1509 ◽  
Author(s):  
Christina Schmitz ◽  
Per Jenmalm ◽  
H. Henrik Ehrsson ◽  
Hans Forssberg

When humans repetitively lift the same object, the fingertip forces are targeted to the weight of the object. The anticipatory programming of the forces depends on sensorimotor memory representations that provide information on the object weight. In the present study, we investigate the neural substrates of these sensorimotor memory systems by recording the neural activity during predictable or unpredictable changes in the weight of an object in a lifting task. An unpredictable change in weight leads to erroneous programming of the fingertip forces. This triggers corrective mechanisms and an update of the sensorimotor memories. In the present fMRI study, healthy right-handed subjects repetitively lifted an object between right index finger and thumb. In the constant condition, which served as a control, the weight of the object remained constant (either 230 or 830 g). The weight alternated between 230 and 830 g during the regular condition and was irregularly changed between the two weights during the irregular condition. When we contrasted regular minus constant and irregular minus constant, we found activations in the right inferior frontal gyrus pars opercularis (area 44), the left parietal operculum and the right supramarginal gyrus. Furthermore, irregular was associated with stronger activation in the right inferior frontal cortex as compared with regular. Taken together, these results suggest that the updating of sensorimotor memory representations and the corrective reactions that occur when we manipulate different objects correspond to changes in synaptic activity in these fronto-parietal circuits.


2020 ◽  
Vol 45 (9) ◽  
pp. 855-864
Author(s):  
Elisa Dal Bò ◽  
Claudio Gentili ◽  
Cinzia Cecchetto

Abstract Across phyla, chemosignals are a widely used form of social communication and increasing evidence suggests that chemosensory communication is present also in humans. Chemosignals can transfer, via body odors, socially relevant information, such as specific information about identity or emotional states. However, findings on neural correlates of processing of body odors are divergent. The aims of this meta-analysis were to assess the brain areas involved in the perception of body odors (both neutral and emotional) and the specific activation patterns for the perception of neutral body odor (NBO) and emotional body odor (EBO). We conducted an activation likelihood estimation (ALE) meta-analysis on 16 experiments (13 studies) examining brain activity during body odors processing. We found that the contrast EBO versus NBO resulted in significant convergence in the right middle frontal gyrus and the left cerebellum, whereas the pooled meta-analysis combining all the studies of human odors showed significant convergence in the right inferior frontal gyrus. No significant cluster was found for NBOs. However, our findings also highlight methodological heterogeneity across the existing literature. Further neuroimaging studies are needed to clarify and support the existing findings on neural correlates of processing of body odors.


2011 ◽  
Vol 71 ◽  
pp. e145
Author(s):  
Sunao Iwaki ◽  
Kouichi Sutani ◽  
Michiyo Inagawa ◽  
Yoshikazu Tobinaga ◽  
Kazuo Nishimura

Sign in / Sign up

Export Citation Format

Share Document