scholarly journals Rhythmic Temporal Structure at Encoding Enhances Recognition Memory

2019 ◽  
Vol 31 (10) ◽  
pp. 1549-1562 ◽  
Author(s):  
Alexander Jones ◽  
Emma V. Ward

Presenting events in a rhythm has been shown to enhance perception and facilitate responses for stimuli that appear in synchrony with the rhythm, but little is known about how rhythm during encoding influences later recognition. In this study, participants were presented with images of everyday objects in an encoding phase before a recognition task in which they judged whether or not objects were previously presented. Blockwise, object presentation during encoding followed either a rhythmic (constant, predictable) or arrhythmic (random, unpredictable) temporal structure, of which participants were unaware. Recognition was greater for items presented in a rhythmic relative to an arrhythmic manner. During encoding, there was a differential neural activity based on memory effect with larger positivity for rhythmic over arrhythmic stimuli. At recognition, memory-specific ERP components were differentially affected by temporal structure: The FN400 old/new effect was unaffected by rhythmic structure, whereas the late positive component old/new effect was observed only for rhythmically encoded items. Taken together, this study provides new evidence that memory-specific processing at recognition is affected by temporal structure at encoding.

2015 ◽  
Vol 27 (1) ◽  
pp. 57-72 ◽  
Author(s):  
Louis Renoult ◽  
Patrick S. R. Davidson ◽  
Erika Schmitz ◽  
Lillian Park ◽  
Kenneth Campbell ◽  
...  

A common assertion is that semantic memory emerges from episodic memory, shedding the distinctive contexts associated with episodes over time and/or repeated instances. Some semantic concepts, however, may retain their episodic origins or acquire episodic information during life experiences. The current study examined this hypothesis by investigating the ERP correlates of autobiographically significant (AS) concepts, that is, semantic concepts that are associated with vivid episodic memories. We inferred the contribution of semantic and episodic memory to AS concepts using the amplitudes of the N400 and late positive component, respectively. We compared famous names that easily brought to mind episodic memories (high AS names) against equally famous names that did not bring such recollections to mind (low AS names) on a semantic task (fame judgment) and an episodic task (recognition memory). Compared with low AS names, high AS names were associated with increased amplitude of the late positive component in both tasks. Moreover, in the recognition task, this effect of AS was highly correlated with recognition confidence. In contrast, the N400 component did not differentiate the high versus low AS names but, instead, was related to the amount of general knowledge participants had regarding each name. These results suggest that semantic concepts high in AS, such as famous names, have an episodic component and are associated with similar brain processes to those that are engaged by episodic memory. Studying AS concepts may provide unique insights into how episodic and semantic memory interact.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Claudia Repetto ◽  
Brian Mathias ◽  
Otto Weichselbaum ◽  
Manuela Macedonia

AbstractAccording to theories of Embodied Cognition, memory for words is related to sensorimotor experiences collected during learning. At a neural level, words encoded with self-performed gestures are represented in distributed sensorimotor networks that resonate during word recognition. Here, we ask whether muscles involved in gesture execution also resonate during word recognition. Native German speakers encoded words by reading them (baseline condition) or by reading them in tandem with picture observation, gesture observation, or gesture observation and execution. Surface electromyogram (EMG) activity from both arms was recorded during the word recognition task and responses were detected using eye-tracking. The recognition of words encoded with self-performed gestures coincided with an increase in arm muscle EMG activity compared to the recognition of words learned under other conditions. This finding suggests that sensorimotor networks resonate into the periphery and provides new evidence for a strongly embodied view of recognition memory.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ricky Chow ◽  
Alix Noly-Gandon ◽  
Aline Moussard ◽  
Jennifer D. Ryan ◽  
Claude Alain

AbstractListening to autobiographically-salient music (i.e., music evoking personal memories from the past), and transcranial direct current stimulation (tDCS) have each been suggested to temporarily improve older adults’ subsequent performance on memory tasks. Limited research has investigated the effects of combining both tDCS and music listening together on cognition. The present study examined whether anodal tDCS stimulation over the left dorsolateral prefrontal cortex (2 mA, 20 min) with concurrent listening to autobiographically-salient music amplified subsequent changes in working memory and recognition memory in older adults than either tDCS or music listening alone. In a randomized sham-controlled crossover study, 14 healthy older adults (64–81 years) participated in three neurostimulation conditions: tDCS with music listening (tDCS + Music), tDCS in silence (tDCS-only), or sham-tDCS with music listening (Sham + Music), each separated by at least a week. Working memory was assessed pre- and post-stimulation using a digit span task, and recognition memory was assessed post-stimulation using an auditory word recognition task (WRT) during which electroencephalography (EEG) was recorded. Performance on the backwards digit span showed improvement in tDCS + Music, but not in tDCS-only or Sham + Music conditions. Although no differences in behavioural performance were observed in the auditory WRT, changes in neural correlates underlying recognition memory were observed following tDCS + Music compared to Sham + Music. Findings suggest listening to autobiographically-salient music may amplify the effects of tDCS for working memory, and highlight the potential utility of neurostimulation combined with personalized music to improve cognitive performance in the aging population.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jorge Oliveira ◽  
Marta Fernandes ◽  
Pedro J. Rosa ◽  
Pedro Gamito

Research on pupillometry provides an increasing evidence for associations between pupil activity and memory processing. The most consistent finding is related to an increase in pupil size for old items compared with novel items, suggesting that pupil activity is associated with the strength of memory signal. However, the time course of these changes is not completely known, specifically, when items are presented in a running recognition task maximizing interference by requiring the recognition of the most recent items from a sequence of old/new items. The sample comprised 42 healthy participants who performed a visual word recognition task under varying conditions of retention interval. Recognition responses were evaluated using behavioral variables for discrimination accuracy, reaction time, and confidence in recognition decisions. Pupil activity was recorded continuously during the entire experiment. The results suggest a decrease in recognition performance with increasing study-test retention interval. Pupil size decreased across retention intervals, while pupil old/new effects were found only for words recognized at the shortest retention interval. Pupillary responses consisted of a pronounced early pupil constriction at retrieval under longer study-test lags corresponding to weaker memory signals. However, the pupil size was also sensitive to the subjective feeling of familiarity as shown by pupil dilation to false alarms (new items judged as old). These results suggest that the pupil size is related not only to the strength of memory signal but also to subjective familiarity decisions in a continuous recognition memory paradigm.


2020 ◽  
Author(s):  
Volkan Nurdal ◽  
Graeme Fairchild ◽  
George Stothart

Introduction: The development of rapid and reliable neural measures of memory is an important goal of cognitive neuroscience research and clinical practice. Fast Periodic Visual Stimulation (FPVS) is a recently developed electroencephalography (EEG) method that involves presenting a mix of novel and previously-learnt stimuli at a fast rate. Recent work has shown that implicit recognition memory can be measured using FPVS, however the role of repetition priming remains unclear. Here, we attempted to separate out the effects of recognition memory and repetition priming by manipulating the degree of repetition of the stimuli to be remembered.Method: Twenty-two participants with a mean age of 20.8 (±4.3) yrs completed an FPVS-oddball paradigm with a varying number of repetitions of the oddball stimuli, ranging from repetition only (pure repetition) to no repetition (pure recognition). In addition to the EEG task, participants completed a behavioural recognition task and visual memory subtests from the Wechsler Memory Scale – 4th edition (WMS-IV). Results: An oddball memory response was observed in all four experimental conditions (pure repetition to pure recognition) compared to the control condition (no oddball stimuli). The oddball memory response was largest in the pure repetition condition and smaller, but still significant, in conditions with less/no oddball repetition (e.g. pure recognition). Behavioural recognition performance was at ceiling, suggesting that all images were encoded successfully. There was no correlation with either behavioural memory performance or WMS-IV scores, suggesting the FPVS-oddball paradigm captures different memory processes than behavioural measures.Conclusion: Repetition priming significantly modulates the FPVS recognition memory response, however recognition is still detectable even in the total absence of repetition priming. The FPVS-oddball paradigm could potentially be developed into an objective and easy-to-administer memory assessment tool.


2016 ◽  
Vol 41 (3) ◽  
pp. 371-379 ◽  
Author(s):  
Monika Hirte ◽  
Frauke Graf ◽  
Ziyon Kim ◽  
Monika Knopf

From birth on, infants show long-term recognition memory for persons. Furthermore, infants from six months onwards are able to store and retrieve demonstrated actions over long-term intervals in deferred imitation tasks. Thus, information about the model demonstrating the object-related actions is stored and recognition memory for the objects as well as memory for the actions is retrieved. To study the development of long-term retention for different memory contents systematically, the present study investigated the recognition of person- and object-related information as well as the retention of actions in two samples of three-year-olds who had participated in a deferred imitation task at either nine or 18 months of age. Results showed that three-year-olds who had participated at nine months of age retained actions in a re-enactment task; however, they neither indicated person- nor object-recognition in a picture-choice task (recognition task). Children who had participated at 18 months of age demonstrated person- and object-recognition but no re-enactment at three years of age. Findings are discussed against the background of memory development from a preverbal to a verbal age and in regard to the characteristics of the recognition vs re-enactment tasks and the stimuli used.


2021 ◽  
Vol 49 (9) ◽  
pp. 1-13
Author(s):  
Yue Jiang

I investigated neural processing during the recognition of pride and joy in early childhood using the event-related potential (ERP) technique. Electroencephalography recording was taken of 21 children aged between 4 and 6 years. They were shown photographs of familiar peers and strangers whose facial expressions displayed the emotion of either pride or joy. ERPs were recorded for the children's judgment of the expression of these two emotions when an image was presented. The results demonstrate that the neural dynamics during children's recognition of pride and joy involve three stages: The early negative component is spontaneously responsive to familiar faces, the midlatency negative central component is responsive to expression of familiar faces, and the late positive component marks greater extended processing of an expression of pride. These findings provide new insight into the neural mechanism of pride and joy recognition in children aged 4 to 6 years.


Sign in / Sign up

Export Citation Format

Share Document