scholarly journals The Neural Correlates of Time: A Meta-analysis of Neuroimaging Studies

2019 ◽  
Vol 31 (12) ◽  
pp. 1796-1826 ◽  
Author(s):  
Andrea Nani ◽  
Jordi Manuello ◽  
Donato Liloia ◽  
Sergio Duca ◽  
Tommaso Costa ◽  
...  

During the last two decades, our inner sense of time has been repeatedly studied with the help of neuroimaging techniques. These investigations have suggested the specific involvement of different brain areas in temporal processing. At least two distinct neural systems are likely to play a role in measuring time: One is mainly constituted of subcortical structures and is supposed to be more related to the estimation of time intervals below the 1-sec range (subsecond timing tasks), and the other is mainly constituted of cortical areas and is supposed to be more related to the estimation of time intervals above the 1-sec range (suprasecond timing tasks). Tasks can then be performed in motor or nonmotor (perceptual) conditions, thus providing four different categories of time processing. Our meta-analytical investigation partly confirms the findings of previous meta-analytical works. Both sub- and suprasecond tasks recruit cortical and subcortical areas, but subcortical areas are more intensely activated in subsecond tasks than in suprasecond tasks, which instead receive more contributions from cortical activations. All the conditions, however, show strong activations in the SMA, whose rostral and caudal parts have an important role not only in the discrimination of different time intervals but also in relation to the nature of the task conditions. This area, along with the striatum (especially the putamen) and the claustrum, is supposed to be an essential node in the different networks engaged when the brain creates our sense of time.

2009 ◽  
Vol 364 (1525) ◽  
pp. 1809-1813 ◽  
Author(s):  
Marc Wittmann ◽  
Virginie van Wassenhove

Time research has been a neglected topic in the cognitive neurosciences of the last decades: how do humans perceive time? How and where in the brain is time processed? This introductory paper provides an overview of the empirical and theoretical papers on the psychological and neural basis of time perception collected in this theme issue. Contributors from the fields of cognitive psychology, psychiatry, neurology and neuroanatomy tackle this complex question with a variety of techniques ranging from psychophysical and behavioural experiments to pharmacological interventions and functional neuroimaging. Several (and some new) models of how and where in the brain time is processed are presented in this unique collection of recent research that covers experienced time intervals from milliseconds to minutes. We hope this volume to be conducive in developing a better understanding of the sense of time as part of complex set of brain–body factors that include cognitive, emotional and body states.


2021 ◽  
Vol 11 (12) ◽  
pp. 1619
Author(s):  
Shinya Watanuki

Brand equity is an important intangible for enterprises. As one advantage, products with brand equity can increase revenue, compared with those without such equity. However, unlike tangibles, it is difficult for enterprises to manage brand equity because it exists within consumers’ minds. Although, over the past two decades, numerous consumer neuroscience studies have revealed the brain regions related to brand equity, the identification of unique brain regions related to such equity is still controversial. Therefore, this study identifies the unique brain regions related to brand equity and assesses the mental processes derived from these regions. For this purpose, three analysis methods (i.e., the quantitative meta-analysis, chi-square tests, and machine learning) were conducted. The data were collected in accordance with the general procedures of a qualitative meta-analysis. In total, 65 studies (1412 foci) investigating branded objects with brand equity and unbranded objects without brand equity were examined, whereas the neural systems involved for these two brain regions were contrasted. According to the results, the parahippocampal gyrus and the lingual gyrus were unique brand equity-related brain regions, whereas automatic mental processes based on emotional associative memories derived from these regions were characteristic mental processes that discriminate branded from unbranded objects.


Author(s):  
Jochen Seitz ◽  
Katharina Bühren ◽  
Georg G. von Polier ◽  
Nicole Heussen ◽  
Beate Herpertz-Dahlmann ◽  
...  

Objective: Acute anorexia nervosa (AN) leads to reduced gray (GM) and white matter (WM) volume in the brain, which however improves again upon restoration of weight. Yet little is known about the extent and clinical correlates of these brain changes, nor do we know much about the time-course and completeness of their recovery. Methods: We conducted a meta-analysis and a qualitative review of all magnetic resonance imaging studies involving volume analyses of the brain in both acute and recovered AN. Results: We identified structural neuroimaging studies with a total of 214 acute AN patients and 177 weight-recovered AN patients. In acute AN, GM was reduced by 5.6% and WM by 3.8% compared to healthy controls (HC). Short-term weight recovery 2–5 months after admission resulted in restitution of about half of the GM aberrations and almost full WM recovery. After 2–8 years of remission GM and WM were nearly normalized, and differences to HC (GM: –1.0%, WM: –0.7%) were no longer significant, although small residual changes could not be ruled out. In the qualitative review some studies found GM volume loss to be associated with cognitive deficits and clinical prognosis. Conclusions: GM and WM were strongly reduced in acute AN. The completeness of brain volume rehabilitation remained equivocal.


Author(s):  
Robert V. Shannon

The auditory brainstem implant (ABI) is a surgically implanted device to electrically stimulate auditory neurons in the cochlear nucleus complex of the brainstem in humans to restore hearing sensations. The ABI is similar in function to a cochlear implant, but overall outcomes are poorer. However, recent applications of the ABI to new patient populations and improvements in surgical technique have led to significant improvements in outcomes. While the ABI provides hearing benefits to patients, the outcomes challenge our understanding of how the brain processes neural patterns of auditory information. The neural pattern of activation produced by an ABI is highly unnatural, yet some patients achieve high levels of speech understanding. Based on a meta-analysis of ABI surgeries and outcomes, a theory is proposed of a specialized sub-system of the cochlear nucleus that is critical for speech understanding.


2021 ◽  
pp. 1-9
Author(s):  
Nour Zughbor ◽  
Aisha Alwahshi ◽  
Rahaf Abdelrahman ◽  
Zeina Elnekiti ◽  
Hoda Elkareish ◽  
...  

<b><i>Introduction:</i></b> Stroke is defined as the lack of blood supply to the brain, leading to rapid loss of brain function presenting with impairments such as muscle weakness, spasticity, lack of coordination, and proprioception loss. Both hydrotherapy and land-based therapy aim to target these aspects in the process of rehabilitation. The study aims to determine the effectiveness of water-based therapy on balance and gait of patients with stroke compared to land-based therapy. <b><i>Methods:</i></b> Data for this review were extracted from databases such as CINAHL, OTseeker, Ovid, PEDro, and PubMed (MEDLINE) and other sources such as Google Scholar. PRISMA guidelines were followed to exclude irrelevant studies. Only randomized controlled trials (RCTs) were included, and methodological quality was assessed using the PEDro scale. A meta-analysis of extracted data was conducted. <b><i>Results:</i></b> A total of 16 relevant RCTs were included for the review (<i>n</i> = 412 participants). All RCTs investigated the effect of water-based therapy compared to land-based therapy on balance and gait of patients with stroke. Meta-analysis of studies that used the Berg Balance Scale (BBS) as a primary outcome measure favored land-based therapy. Studies that used the Good Balance System (GBS) and the Biodex Balance System (BioBS) to measure the changes in anteroposterior sway and mediolateral sway favored water-based therapy. The overall pooled effect favored land-based therapy in improving gait parameters. <b><i>Conclusion:</i></b> Findings from meta-analysis support the effectiveness of land-based therapy in the improvement of balance and gait parameters of patients with stroke. However, the evidence for water-based therapy continues to be limited, and higher quality studies are required to determine the effectiveness of water-based therapy on patients with stroke, particularly on balance and gait.


2008 ◽  
Vol 105 (46) ◽  
pp. 18053-18057 ◽  
Author(s):  
Katherine M. Nautiyal ◽  
Ana C. Ribeiro ◽  
Donald W. Pfaff ◽  
Rae Silver

Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient KitW−sh/W−sh (sash−/−) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links.


1997 ◽  
Vol 3 (4) ◽  
pp. 359-369 ◽  
Author(s):  
RUSSELL A. BARKLEY ◽  
SETH KOPLOWITZ ◽  
TAMARA ANDERSON ◽  
MARY B. McMURRAY

A recent theory of ADHD predicts a deficiency in sense of time in the disorder. Two studies were conducted to test this prediction, and to evaluate the effects of interval duration, distraction, and stimulant medication on the reproductions of temporal durations in children with ADHD. Study I: 12 ADHD children and 26 controls (ages 6–14 years) were tested using a time reproduction task in which subjects had to reproduce intervals of 12, 24, 36, 48, and 60 s. Four trials at each duration were presented with a distraction occurring on half of these trials. Control subjects were significantly more accurate than ADHD children at most durations and were unaffected by the distraction. ADHD children, in contrast, were significantly less accurate when distracted. Both groups became less accurate with increasing durations to be reproduced. Study II: Tested three doses of methylphenidate (MPH) and placebo on the time reproductions of the 12 ADHD children. ADHD children became less accurate with increasing durations and distraction was found to reduce accuracy at 36 s or less. No effects of MPH were evident. The results of these preliminary studies seem to support the prediction that sense of time is impaired in children with ADHD. The capacity to accurately reproduce time intervals in ADHD children does not seem to improve with administration of stimulant medication. (JINS, 1997, 3, 359–369.)


2021 ◽  
Vol 226 (4) ◽  
pp. 1155-1167 ◽  
Author(s):  
Anne C. Trutti ◽  
Laura Fontanesi ◽  
Martijn J. Mulder ◽  
Pierre-Louis Bazin ◽  
Bernhard Hommel ◽  
...  

AbstractFunctional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortical nuclei are captured by current atlases. This highlights the general difficulty in mapping smaller nuclei deep in the brain, which can be addressed using ultra-high field 7 Tesla (T) MRI. The ventral tegmental area (VTA) is a subcortical structure that plays a pivotal role in reward processing, learning and memory. Despite the significant interest in this nucleus in cognitive neuroscience, there are currently no available, anatomically precise VTA atlases derived from 7 T MRI data that cover the full region of the VTA. Here, we first provide a protocol for multimodal VTA imaging and delineation. We then provide a data description of a probabilistic VTA atlas based on in vivo 7 T MRI data.


Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 557
Author(s):  
Roberta Barrasso ◽  
Vincenzo Tufarelli ◽  
Edmondo Ceci ◽  
Francesco Luposella ◽  
Giancarlo Bozzo

The aim of this study was to evaluate the persistence of two signs of consciousness (rhythmic breathing and corneal reflex) in lambs slaughtered according to the traditional method and Halal ritual rite. A total of 240 lambs were examined and divided into two equal groups (n = 120 each). Lambs of group A were subjected to the stunning phase by the action of an electric current on the brain, while lambs of group B were slaughtered according to the religious Halal method without prior stunning. Rhythmic breathing (RB) and corneal reflex (CR) were used as indicators of prolonged brain function, and their evaluation was carried out by the operators in three subsequent steps at 15 s, 30 s, and 90 s post-bleeding, respectively. The stunning of the lambs reduced the animal’s state of consciousness and, consequently, reduced suffering, pain, and distress. Indeed, the lambs of group B showed longer duration consciousness than the animals stunned by electrodes. The permanence of the reflexes in Halal slaughter could be reduced by introducing a reversible stunning method to make the animal temporarily unconscious. Moreover, given that our results revealed consciousness also after 90 s post-cut, the assessment of the animal’s state of consciousness in wider time intervals than those commonly used is recommended.


2007 ◽  
Vol 33 (2-3) ◽  
pp. 433-456 ◽  
Author(s):  
Adam J. Kolber

A neurologist with abdominal pain goes to see a gastroenterologist for treatment. The gastroenterologist asks the neurologist where it hurts. The neurologist replies, “In my head, of course.” Indeed, while we can feel pain throughout much of our bodies, pain signals undergo most of their processing in the brain. Using neuroimaging techniques like functional magnetic resonance imaging (“fMRI”) and positron emission tomography (“PET”), researchers have more precisely identified brain regions that enable us to experience physical pain. Certain regions of the brain's cortex, for example, increase in activation when subjects are exposed to painful stimuli. Furthermore, the amount of activation increases with the intensity of the painful stimulus. These findings suggest that we may be able to gain insight into the amount of pain a particular person is experiencing by non-invasively imaging his brain.Such insight could be particularly valuable in the courtroom where we often have no definitive medical evidence to prove or disprove claims about the existence and extent of pain symptoms.


Sign in / Sign up

Export Citation Format

Share Document