scholarly journals EEG Data Space Adaptation to Reduce Intersession Nonstationarity in Brain-Computer Interface

2013 ◽  
Vol 25 (8) ◽  
pp. 2146-2171 ◽  
Author(s):  
Mahnaz Arvaneh ◽  
Cuntai Guan ◽  
Kai Keng Ang ◽  
Chai Quek

A major challenge in EEG-based brain-computer interfaces (BCIs) is the intersession nonstationarity in the EEG data that often leads to deteriorated BCI performances. To address this issue, this letter proposes a novel data space adaptation technique, EEG data space adaptation (EEG-DSA), to linearly transform the EEG data from the target space (evaluation session), such that the distribution difference to the source space (training session) is minimized. Using the Kullback-Leibler (KL) divergence criterion, we propose two versions of the EEG-DSA algorithm: the supervised version, when labeled data are available in the evaluation session, and the unsupervised version, when labeled data are not available. The performance of the proposed EEG-DSA algorithm is evaluated on the publicly available BCI Competition IV data set IIa and a data set recorded from 16 subjects performing motor imagery tasks on different days. The results show that the proposed EEG-DSA algorithm in both the supervised and unsupervised versions significantly outperforms the results without adaptation in terms of classification accuracy. The results also show that for subjects with poor BCI performances when no adaptation is applied, the proposed EEG-DSA algorithm in both the supervised and unsupervised versions significantly outperforms the unsupervised bias adaptation algorithm (PMean).

2021 ◽  
Vol 11 (24) ◽  
pp. 11876
Author(s):  
Catalin Dumitrescu ◽  
Ilona-Madalina Costea ◽  
Augustin Semenescu

In recent years, the control of devices “by the power of the mind” has become a very controversial topic but has also been very well researched in the field of state-of-the-art gadgets, such as smartphones, laptops, tablets and even smart TVs, and also in medicine, to be used by people with disabilities for whom these technologies may be the only way to communicate with the outside world. It is well known that BCI control is a skill and can be improved through practice and training. This paper aims to improve and diversify signal processing methods for the implementation of a brain-computer interface (BCI) based on neurological phenomena recorded during motor tasks using motor imagery (MI). The aim of the research is to extract, select and classify the characteristics of electroencephalogram (EEG) signals, which are based on sensorimotor rhythms, for the implementation of BCI systems. This article investigates systems based on brain-computer interfaces, especially those that use the electroencephalogram as a method of acquisition of MI tasks. The purpose of this article is to allow users to manipulate quadcopter virtual structures (external, robotic objects) simply through brain activity, correlated with certain mental tasks using undecimal transformation (UWT) to reduce noise, Independent Component Analysis (ICA) together with determination coefficient (r2) and, for classification, a hybrid neural network consisting of Radial Basis Functions (RBF) and a multilayer perceptron–recurrent network (MLP–RNN), obtaining a classification accuracy of 95.5%. Following the tests performed, it can be stated that the use of biopotentials in human–computer interfaces is a viable method for applications in the field of BCI. The results presented show that BCI training can produce a rapid change in behavioral performance and cognitive properties. If more than one training session is used, the results may be beneficial for increasing poor cognitive performance. To achieve this goal, three steps were taken: understanding the functioning of BCI systems and the neurological phenomena involved; acquiring EEG signals based on sensorimotor rhythms recorded during MI tasks; applying and optimizing extraction methods, selecting and classifying characteristics using neuronal networks.


Author(s):  
Wakana Ishihara ◽  
Karen Moxon ◽  
Sheryl Ehrman ◽  
Mark Yarborough ◽  
Tina L. Panontin ◽  
...  

This systematic review addresses the plausibility of using novel feedback modalities for brain–computer interface (BCI) and attempts to identify the best feedback modality on the basis of the effectiveness or learning rate. Out of the chosen studies, it was found that 100% of studies tested visual feedback, 31.6% tested auditory feedback, 57.9% tested tactile feedback, and 21.1% tested proprioceptive feedback. Visual feedback was included in every study design because it was intrinsic to the response of the task (e.g. seeing a cursor move). However, when used alone, it was not very effective at improving accuracy or learning. Proprioceptive feedback was most successful at increasing the effectiveness of motor imagery BCI tasks involving neuroprosthetics. The use of auditory and tactile feedback resulted in mixed results. The limitations of this current study and further study recommendations are discussed.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dheeraj Rathee ◽  
Haider Raza ◽  
Sujit Roy ◽  
Girijesh Prasad

AbstractRecent advancements in magnetoencephalography (MEG)-based brain-computer interfaces (BCIs) have shown great potential. However, the performance of current MEG-BCI systems is still inadequate and one of the main reasons for this is the unavailability of open-source MEG-BCI datasets. MEG systems are expensive and hence MEG datasets are not readily available for researchers to develop effective and efficient BCI-related signal processing algorithms. In this work, we release a 306-channel MEG-BCI data recorded at 1KHz sampling frequency during four mental imagery tasks (i.e. hand imagery, feet imagery, subtraction imagery, and word generation imagery). The dataset contains two sessions of MEG recordings performed on separate days from 17 healthy participants using a typical BCI imagery paradigm. The current dataset will be the only publicly available MEG imagery BCI dataset as per our knowledge. The dataset can be used by the scientific community towards the development of novel pattern recognition machine learning methods to detect brain activities related to motor imagery and cognitive imagery tasks using MEG signals.


2021 ◽  
Vol 12 (3) ◽  
pp. 1-20
Author(s):  
Damodar Reddy Edla ◽  
Shubham Dodia ◽  
Annushree Bablani ◽  
Venkatanareshbabu Kuppili

Brain-Computer Interface is the collaboration of the human brain and a device that controls the actions of a human using brain signals. Applications of brain-computer interface vary from the field of entertainment to medical. In this article, a novel Deceit Identification Test is proposed based on the Electroencephalogram signals to identify and analyze the human behavior. Deceit identification test is based on P300 signals, which have a positive peak from 300 ms to 1,000 ms of the stimulus onset. The aim of the experiment is to identify and classify P300 signals with good classification accuracy. For preprocessing, a band-pass filter is used to eliminate the artifacts. The feature extraction is carried out using “symlet” Wavelet Packet Transform (WPT). Deep Neural Network (DNN) with two autoencoders having 10 hidden layers each is applied as the classifier. A novel experiment is conducted for the collection of EEG data from the subjects. EEG signals of 30 subjects (15 guilty and 15 innocent) are recorded and analyzed during the experiment. BrainVision recorder and analyzer are used for recording and analyzing EEG signals. The model is trained for 90% of the dataset and tested for 10% of the dataset and accuracy of 95% is obtained.


2020 ◽  
Vol 16 (2) ◽  
Author(s):  
Stanisław Karkosz ◽  
Marcin Jukiewicz

AbstractObjectivesOptimization of Brain-Computer Interface by detecting the minimal number of morphological features of signal that maximize accuracy.MethodsSystem of signal processing and morphological features extractor was designed, then the genetic algorithm was used to select such characteristics that maximize the accuracy of the signal’s frequency recognition in offline Brain-Computer Interface (BCI).ResultsThe designed system provides higher accuracy results than a previously developed system that uses the same preprocessing methods, however, different results were achieved for various subjects.ConclusionsIt is possible to enhance the previously developed BCI by combining it with morphological features extraction, however, it’s performance is dependent on subject variability.


2021 ◽  
Author(s):  
Natalia Browarska ◽  
Jaroslaw Zygarlicki ◽  
Mariusz Pelc ◽  
Michal Niemczynowicz ◽  
Malgorzata Zygarlicka ◽  
...  

2018 ◽  
Vol 8 (11) ◽  
pp. 199 ◽  
Author(s):  
Rodrigo Ramele ◽  
Ana Villar ◽  
Juan Santos

The Electroencephalography (EEG) is not just a mere clinical tool anymore. It has become the de-facto mobile, portable, non-invasive brain imaging sensor to harness brain information in real time. It is now being used to translate or decode brain signals, to diagnose diseases or to implement Brain Computer Interface (BCI) devices. The automatic decoding is mainly implemented by using quantitative algorithms to detect the cloaked information buried in the signal. However, clinical EEG is based intensively on waveforms and the structure of signal plots. Hence, the purpose of this work is to establish a bridge to fill this gap by reviewing and describing the procedures that have been used to detect patterns in the electroencephalographic waveforms, benchmarking them on a controlled pseudo-real dataset of a P300-Based BCI Speller and verifying their performance on a public dataset of a BCI Competition.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sanghum Woo ◽  
Jongmin Lee ◽  
Hyunji Kim ◽  
Sungwoo Chun ◽  
Daehyung Lee ◽  
...  

Brain–computer interfaces can provide a new communication channel and control functions to people with restricted movements. Recent studies have indicated the effectiveness of brain–computer interface (BCI) applications. Various types of applications have been introduced so far in this field, but the number of those available to the public is still insufficient. Thus, there is a need to expand the usability and accessibility of BCI applications. In this study, we introduce a BCI application for users to experience a virtual world tour. This software was built on three open-source environments and is publicly available through the GitHub repository. For a usability test, 10 healthy subjects participated in an electroencephalography (EEG) experiment and evaluated the system through a questionnaire. As a result, all the participants successfully played the BCI application with 96.6% accuracy with 20 blinks from two sessions and gave opinions on its usability (e.g., controllability, completeness, comfort, and enjoyment) through the questionnaire. We believe that this open-source BCI world tour system can be used in both research and entertainment settings and hopefully contribute to open science in the BCI field.


Sign in / Sign up

Export Citation Format

Share Document