scholarly journals Mapping hybrid functional-structural connectivity traits in the human connectome

2018 ◽  
Vol 2 (3) ◽  
pp. 306-322 ◽  
Author(s):  
Enrico Amico ◽  
Joaquín Goñi

One of the crucial questions in neuroscience is how a rich functional repertoire of brain states relates to its underlying structural organization. How to study the associations between these structural and functional layers is an open problem that involves novel conceptual ways of tackling this question. We here propose an extension of the Connectivity Independent Component Analysis (connICA) framework to identify joint structural-functional connectivity traits. Here, we extend connICA to integrate structural and functional connectomes by merging them into common “hybrid” connectivity patterns that represent the connectivity fingerprint of a subject. We tested this extended approach on the 100 unrelated subjects from the Human Connectome Project. The method is able to extract main independent structural-functional connectivity patterns from the entire cohort that are sensitive to the realization of different tasks. The hybrid connICA extracts two main task-sensitive hybrid traits. The first trait encompasses the within and between connections of dorsal attentional and visual areas, as well as frontoparietal circuits. The second trait mainly encompasses the connectivity between visual, attentional, default mode network (DMN), and subcortical network. Overall, these findings confirm the potential of the hybrid connICA for the compression of structural/functional connectomes into integrated patterns from a set of individual brain networks.

2020 ◽  
Vol 4 (2) ◽  
pp. 467-483 ◽  
Author(s):  
Michael Forrester ◽  
Jonathan J. Crofts ◽  
Stamatios N. Sotiropoulos ◽  
Stephen Coombes ◽  
Reuben D. O’Dea

The contribution of structural connectivity to functional brain states remains poorly understood. We present a mathematical and computational study suited to assess the structure–function issue, treating a system of Jansen–Rit neural mass nodes with heterogeneous structural connections estimated from diffusion MRI data provided by the Human Connectome Project. Via direct simulations we determine the similarity of functional (inferred from correlated activity between nodes) and structural connectivity matrices under variation of the parameters controlling single-node dynamics, highlighting a nontrivial structure–function relationship in regimes that support limit cycle oscillations. To determine their relationship, we firstly calculate network instabilities giving rise to oscillations, and the so-called ‘false bifurcations’ (for which a significant qualitative change in the orbit is observed, without a change of stability) occurring beyond this onset. We highlight that functional connectivity (FC) is inherited robustly from structure when node dynamics are poised near a Hopf bifurcation, whilst near false bifurcations, and structure only weakly influences FC. Secondly, we develop a weakly coupled oscillator description to analyse oscillatory phase-locked states and, furthermore, show how the modular structure of FC matrices can be predicted via linear stability analysis. This study thereby emphasises the substantial role that local dynamics can have in shaping large-scale functional brain states.


2021 ◽  
Author(s):  
Yusi Chen ◽  
Qasim Bukhari ◽  
Tiger Wutu Lin ◽  
Terrence J Sejnowski

Recordings from resting state functional magnetic resonance imaging (rs-fMRI) reflect the influence of pathways between brain areas. A wide range of methods have been proposed to measure this functional connectivity (FC), but the lack of ''ground truth'' has made it difficult to systematically validate them. Most measures of FC produce connectivity estimates that are symmetrical between brain areas. Differential covariance (dCov) is an algorithm for analyzing FC with directed graph edges. Applied to synthetic datasets, dCov-FC was more effective than covariance and partial correlation in reducing false positive connections and more accurately matching the underlying structural connectivity. When we applied dCov-FC to resting state fMRI recordings from the human connectome project (HCP) and anesthetized mice, dCov-FC accurately identified strong cortical connections from diffusion Magnetic Resonance Imaging (dMRI) in individual humans and viral tract tracing in mice. In addition, those HCP subjects whose rs-fMRI were more integrated, as assessed by a graph-theoretic measure, tended to have shorter reaction times in several behavioral tests. Thus, dCov-FC was able to identify anatomically verified connectivity that yielded measures of brain integration causally related to behavior.


2018 ◽  
Author(s):  
Jennifer R Sadler ◽  
Grace Elisabeth Shearrer ◽  
Kyle Stanley Burger

Understanding weight-related differences in functional connectivity provides key insight into neurocognitive factors implicated in obesity. Here, we sampled three groups from human connectome project data: 1) 47 pairs of BMI-discordant twins (n=94; average BMI-discordancy 6.7 3.1 kg/m2), 2) 47 pairs of gender and BMI matched BMI-discordant, unrelated individuals, and 3) 47 pairs of BMI-similar twins to test for body mass dependent differences in between network functional connectivity. Across BMI discordant samples, three networks appeared to be highly sensitivity to weight status; specifically, a network compromised of gustatory processing regions, a visual processing network, and the default mode network (DMN). Further, individuals with a lower BMI relative to their twin had stronger connectivity between striatal/thalamic and prefrontal networks (pFWE = 0.04) in the BMI-discordant twin sample. Cortical-striatal-thalamic networks underlie regulation of hedonically motivated behaviors. Stronger connectivity may facilitate increased regulation of decision-making when presented with highly rewarding, energy-dense foods. We also observed that individuals with a higher BMI than their twin had stronger connectivity between cerebellar and insular networks (pFWE = 0.04). Increased cerebellar-insula connectivity is associated with caloric deprivation and, in high BMI individuals, is associated compromised satiation signaling, thereby increasing risk for postprandial food intake. Connectivity patterns observed in the BMI-discordant twin sample were not see in a BMI-similar sample, providing evidence that the results are specific to BMI discordance. Beyond the involvement of gustatory and visual networks and the DMN, little overlap in results were seen between the two BMI-discordant samples. This may be a function of the higher study design sensitivity in the BMI-discordant twin sample, relative to the more generalizable results in the unrelated sample. These findings demonstrate that distinct connectivity patterns can represent weight variability, adding to mounting evidence that implicates atypical brain functioning with the accumulation and/or maintenance of elevated weight.


2016 ◽  
Author(s):  
Felix Fischer ◽  
Florian Pieper ◽  
Edgar Galindo-Leon ◽  
Gerhard Engler ◽  
Claus C. Hilgetag ◽  
...  

AbstractCortical activity patterns change in different depths of general anesthesia. Here we investigate the associated network level changes of functional connectivity. We recorded ongoing electrocorticographic (ECoG) activity from the ferret temporo-parieto-occipital cortex under various levels of isoflurane and determined the functional connectivity by computing amplitude envelope correlations. Through hierarchical clustering, we derived typical connectivity patterns corresponding to light, intermediate and deep anesthesia. Generally, amplitude correlation strength increased strongly with depth of anesthesia across all cortical areas and frequency bands. This was accompanied by the emergence of burstsuppression activity in the ECoG signal and a change of the spectrum of the amplitude envelope. Normalizing the functional connectivity patterns showed that the topographical structure remained similar across depths of anesthesia, resembling the functional association of the underlying cortical areas. Thus, while strength and temporal properties of amplitude co-modulation vary depending on the activity of local neural circuits, their network-level interaction pattern is presumably most strongly determined by the underlying structural connectivity.


2018 ◽  
Vol 15 (suppl_1) ◽  
pp. S350-S371 ◽  
Author(s):  
Cordell M Baker ◽  
Joshua D Burks ◽  
Robert G Briggs ◽  
Andrew K Conner ◽  
Chad A Glenn ◽  
...  

ABSTRACT In this supplement, we build on work previously published under the Human Connectome Project. Specifically, we seek to show a comprehensive anatomic atlas of the human cerebrum demonstrating all 180 distinct regions comprising the cerebral cortex. The location, functional connectivity, and structural connectivity of these regions are outlined, and where possible a discussion is included of the functional significance of these areas. In part 8, we specifically address regions relevant to the posterior cingulate cortex, medial parietal lobe, and the parieto-occipital sulcus.


2018 ◽  
Vol 15 (suppl_1) ◽  
pp. S295-S349 ◽  
Author(s):  
Cordell M Baker ◽  
Joshua D Burks ◽  
Robert G Briggs ◽  
Andrew K Conner ◽  
Chad A Glenn ◽  
...  

ABSTRACT In this supplement, we build on work previously published under the Human Connectome Project. Specifically, we seek to show a comprehensive anatomic atlas of the human cerebrum demonstrating all 180 distinct regions comprising the cerebral cortex. The location, functional connectivity, and structural connectivity of these regions are outlined, and where possible a discussion is included of the functional significance of these areas. In part 7, we specifically address regions relevant to the lateral parietal lobe.


Author(s):  
Josh Neudorf ◽  
Shaylyn Kress ◽  
Ron Borowsky

AbstractAlthough functional connectivity and associated graph theory measures (e.g., centrality; how centrally important to the network a region is) are widely used in brain research, the full extent to which these functional measures are related to the underlying structural connectivity is not yet fully understood. Graph neural network deep learning methods have not yet been applied for this purpose, and offer an ideal model architecture for working with connectivity data given their ability to capture and maintain inherent network structure. Here, we applied this model to predict functional connectivity from structural connectivity in a sample of 998 participants from the Human Connectome Project. Our results showed that the graph neural network accounted for 89% of the variance in mean functional connectivity, 56% of the variance in individual-level functional connectivity, 99% of the variance in mean functional centrality, and 81% of the variance in individual-level functional centrality. These results represent an important finding that functional centrality can be robustly predicted from structural connectivity. Regions of particular importance to the model's performance as determined through lesioning are discussed, whereby regions with higher centrality have a higher impact on model performance. Future research on models of patient, demographic, or behavioural data can also benefit from this graph neural network method as it is ideally-suited for depicting connectivity and centrality in brain networks. These results have set a new benchmark for prediction of functional connectivity from structural connectivity, and models like this may ultimately lead to a way to predict functional connectivity in individuals who are unable to do fMRI tasks (e.g., non-responsive patients).


2018 ◽  
Author(s):  
J. Zimmermann ◽  
J.G. Griffiths ◽  
A.R. McIntosh

AbstractThe unique mapping of structural and functional brain connectivity (SC, FC) on cognition is currently not well understood. It is not clear whether cognition is mapped via a global connectome pattern or instead is underpinned by several sets of distributed connectivity patterns. Moreover, we also do not know whether the pattern of SC and of FC that underlie cognition are overlapping or distinct. Here, we study the relationship between SC and FC and an array of psychological tasks in 609 subjects from the Human Connectome Project (HCP). We identified several sets of connections that each uniquely map onto different aspects of cognitive function. We found a small number of distributed SC and a larger set of cortico-cortical and cortico-subcortical FC that express this association. Importantly, SC and FC each show unique and distinct patterns of variance across subjects and differential relationships to cognition. The results suggest that a complete understanding of connectome underpinnings of cognition calls for a combination of the two modalities.Significance StatementStructural connectivity (SC), the physical white-matter inter-regional pathways in the brain, and functional connectivity (FC), the temporal co-activations between activity of brain regions, have each been studied extensively. Little is known, however, about the distribution of variance in connections as they relate to cognition. Here, in a large sample of subjects (N = 609), we showed that two sets of brain-behavioural patterns capture the correlations between SC, and FC with a wide range of cognitive tasks, respectively. These brain-behavioural patterns reveal distinct sets of connections within the SC and the FC network and provide new evidence that SC and FC each provide unique information for cognition.


2021 ◽  
Author(s):  
SUBBA REDDY OOTA ◽  
Archi Yadav ◽  
Arpita Dash ◽  
Surampudi Bapi Raju ◽  
Avinash Sharma

Over the last decade, there has been growing interest in learning the mapping from structural connectivity (SC) to functional connectivity (FC) of the brain. The spontaneous fluctuations of the brain activity during the resting-state as captured by functional MRI (rsfMRI) contain rich non-stationary dynamics over a relatively fixed structural connectome. Among the modeling approaches, graph diffusion-based methods with single and multiple diffusion kernels approximating static or dynamic functional connectivity have shown promise in predicting the FC given the SC. However, these methods are computationally expensive, not scalable, and fail to capture the complex dynamics underlying the whole process. Recently, deep learning methods such as GraphHeat networks along with graph diffusion have been shown to handle complex relational structures while preserving global information. In this paper, we propose a novel attention-based fusion of multiple GraphHeat networks (A-GHN) for mapping SC-FC. A-GHN enables us to model multiple heat kernel diffusion over the brain graph for approximating the complex Reaction Diffusion phenomenon. We argue that the proposed deep learning method overcomes the scalability and computational inefficiency issues but can still learn the SC-FC mapping successfully. Training and testing were done using the rsfMRI data of 100 participants from the human connectome project (HCP), and the results establish the viability of the proposed model. Furthermore, experiments demonstrate that A-GHN outperforms the existing methods in learning the complex nature of human brain function.


Sign in / Sign up

Export Citation Format

Share Document