scholarly journals The Domain-General Multiple Demand network is More Active in Early Balanced Bilinguals than Monolinguals During Executive Processing

2021 ◽  
pp. 1-36
Author(s):  
Saima Malik-Moraleda ◽  
Theodor Cucu ◽  
Benjamin Lipkin ◽  
Evelina Fedorenko

Abstract The bilingual experience may place special cognitive demands on speakers and has been argued to lead to improvements in domain-general executive abilities, like cognitive control and working memory. Such improvements have been argued for based on both behavioral and brain imaging evidence. However, the empirical landscape is complex and ridden by controversy. Here we attempt to shed light on this question through an fMRI investigation of relatively large, relatively homogeneous, and carefully matched samples of early balanced bilinguals (n=55) and monolinguals (n=54) using robust, previously validated individual-level markers of neural activity in the domain-general Multiple Demand (MD) network, which supports executive functions. We find that the bilinguals, compared to the monolinguals, show significantly stronger neural responses to an executive (spatial working memory) task, and a larger difference between a harder and an easier condition of the task, across the MD network. These stronger neural responses are accompanied by better behavioral performance on the working memory task. We further show that the bilingual-vs.-monolingual difference in neural responses is not ubiquitous across the brain as no group difference in magnitude is observed in primary visual areas, which also respond to the task. Although the neural group difference in the MD network appears robust, it remains difficult to causally link it to bilingual experience specifically. Dedication: We would like to dedicate this paper to the memory of Albert Costa, who we both knew well and loved as a mentor and a friend. Saima will always be grateful that Albert let her spend her senior year in his lab despite not even being from the same university; his support, mentorship and guidance helped her not stray away from academia when things got tough. And Ev will forever remember the weekly Friday night partying with Albert and the rest of the “crew” in The Cellar and The People’s Republik during her undergrad years in the Caramazza Lab in the late 1990s and early 2000s.

Author(s):  
Francesco Panico ◽  
Stefania De Marco ◽  
Laura Sagliano ◽  
Francesca D’Olimpio ◽  
Dario Grossi ◽  
...  

AbstractThe Corsi Block-Tapping test (CBT) is a measure of spatial working memory (WM) in clinical practice, requiring an examinee to reproduce sequences of cubes tapped by an examiner. CBT implies complementary behaviors in the examiners and the examinees, as they have to attend a precise turn taking. Previous studies demonstrated that the Prefrontal Cortex (PFC) is activated during CBT, but scarce evidence is available on the neural correlates of CBT in the real setting. We assessed PFC activity in dyads of examiner–examinee participants while completing the real version of CBT, during conditions of increasing and exceeding workload. This procedure allowed to investigate whether brain activity in the dyads is coordinated. Results in the examinees showed that PFC activity was higher when the workload approached or reached participants’ spatial WM span, and lower during workload conditions that were largely below or above their span. Interestingly, findings in the examiners paralleled the ones in the examinees, as examiners’ brain activity increased and decreased in a similar way as the examinees’ one. In the examiners, higher left-hemisphere activity was observed suggesting the likely activation of non-spatial WM processes. Data support a bell-shaped relationship between cognitive load and brain activity, and provide original insights on the cognitive processes activated in the examiner during CBT.


2003 ◽  
Vol 33 (3) ◽  
pp. 455-467 ◽  
Author(s):  
F. C. MURPHY ◽  
A. MICHAEL ◽  
T. W. ROBBINS ◽  
B. J. SAHAKIAN

Background. Recent evidence suggests that an abnormal response to performance feedback may contribute to the wide-ranging neuropsychological deficits typically associated with depressive illness. The present research sought to determine whether the inability of depressed patients to utilize performance feedback advantageously is equally true for accurate and misleading feedback.Method. Patients with major depression and matched controls completed: (1) a visual discrimination and reversal task that featured intermittent and misleading negative feedback; and (2) feedback and no-feedback versions of a computerised test of spatial working memory. In the feedback version, negative feedback was accurate, highly informative, and could be used as a mnemonic aid.Results. On the Probability Reversal task, depressed patients were impaired in their ability to maintain response set in the face of misleading negative feedback as shown by their increased tendency to switch responding to the ‘incorrect’ stimulus following negative reinforcement, relative to that of controls. Patients' ability to acquire and reverse the necessary visual discrimination was unimpaired. On the Spatial Working Memory task, depressed patients made significantly more between-search errors than controls on the most difficult trials, but their ability to use negative feedback to facilitate performance remained intact.Conclusions. The present results suggest that feedback can have different effects in different contexts. Misleading, negative feedback appears to disrupt the performance of depressed patients, whereas negative but accurate feedback does not. These findings are considered in the context of recent studies on reinforcement systems and their associated neurobiological substrates.


NeuroImage ◽  
1998 ◽  
Vol 8 (3) ◽  
pp. 249-261 ◽  
Author(s):  
B.J. Casey ◽  
Jonathan D. Cohen ◽  
Kathy O'Craven ◽  
Richard J. Davidson ◽  
William Irwin ◽  
...  

2021 ◽  
Author(s):  
Aleš Oblak ◽  
Anka Slana Ozimič ◽  
Grega Repovš ◽  
Urban Kordeš

In experimental cognitive psychology, objects of inquiry have typically been operationalized with psychological tasks. If we are interested in measuring the target phenomena, we must inquire into the validity of the task; that is, to what extent does the task elicit the phenomenon in question. If we subscribe to the second view, evaluating the validity and the interpretation of the gathered data can be supplemented by understanding the experience of solving psychological tasks. The aim of the present article is to investigate how individuals experience performing a psychological task, specifically, a visuo-spatial working memory task. We present ethnographic descriptions of different ways individuals can experience the same task. We focus on aspects of experience that comprise the overall sense of experience (e.g., bodily feelings, emotional atmosphere, mood). We discuss the methodological implications of our findings and the possibility of conducting a neurophenomenology of visuo-spatial working memory.


Author(s):  
Yurui Gao ◽  
Muwei Li ◽  
Anna S Huang ◽  
Adam W Anderson ◽  
Zhaohua Ding ◽  
...  

BACKGROUND: Schizophrenia, characterized by cognitive impairments, arises from a disturbance of brain network. Pathological changes in white matter (WM) have been indicated as playing a role in disturbing neural connectivity in schizophrenia. However, deficits of functional connectivity (FC) in individual WM bundles in schizophrenia have never been explored; neither have cognitive correlates with those deficits. METHODS: Resting-state and spatial working memory task fMRI images were acquired on 67 healthy subjects and 84 patients with schizophrenia. The correlations in blood-oxygenation-level-dependent (BOLD) signals between 46 WM and 82 gray matter regions were quantified, analyzed and compared between groups under three scenarios (i.e., resting state, retention period and entire time of a spatial working memory task). Associations of FC in WM with cognitive assessment scores were evaluated for three scenarios. RESULTS: FC deficits were significant (p<.05) in external capsule, cingulum, uncinate fasciculus, genu and body of corpus callosum under all three scenarios. Deficits were also present in the anterior limb of the internal capsule and cerebral peduncle in task scenario. Decreased FCs in specific WM bundles associated significantly (p<.05) with cognitive impairments in working memory, processing speed and/or cognitive control. CONCLUSIONS: Decreases in FC are evident in several WM bundles in patients with schizophrenia and are significantly associated with cognitive impairments during both rest and working memory tasks. Furthermore, working memory tasks expose FC deficits in more WM bundles and more cognitive associates in schizophrenia than resting state does.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gianluca Amico ◽  
Sabine Schaefer

Studies examining the effect of embodied cognition have shown that linking one’s body movements to a cognitive task can enhance performance. The current study investigated whether concurrent walking while encoding or recalling spatial information improves working memory performance, and whether 10-year-old children, young adults, or older adults (Mage = 72 years) are affected differently by embodiment. The goal of the Spatial Memory Task was to encode and recall sequences of increasing length by reproducing positions of target fields in the correct order. The nine targets were positioned in a random configuration on a large square carpet (2.5 m × 2.5 m). During encoding and recall, participants either did not move, or they walked into the target fields. In a within-subjects design, all possible combinations of encoding and recall conditions were tested in counterbalanced order. Contrary to our predictions, moving particularly impaired encoding, but also recall. These negative effects were present in all age groups, but older adults’ memory was hampered even more strongly by walking during encoding and recall. Our results indicate that embodiment may not help people to memorize spatial information, but can create a dual-task situation instead.


2019 ◽  
Vol 27 (1) ◽  
pp. 96-104 ◽  
Author(s):  
Ya Gao ◽  
Jan Theeuwes

AbstractWhere and what we attend to is not only determined by our current goals but also by what we have encountered in the past. Recent studies have shown that people learn to extract statistical regularities in the environment resulting in attentional suppression of high-probability distractor locations, effectively reducing capture by a distractor. Here, we asked whether this statistical learning is dependent on working memory resources. The additional singleton task in which one location was more likely to contain a distractor was combined with a concurrent visual working memory task (Experiment 1) and a spatial working memory task (Experiment 2). The result showed that learning to suppress this high-probability location was not at all affected by working memory load. We conclude that learning to suppress a location is an implicit and automatic process that does not rely on visual or spatial working memory capacity, nor on executive control resources. We speculate that extracting regularities from the environment likely relies on long-term memory processes.


2007 ◽  
Vol 105 (1) ◽  
pp. 243-250 ◽  
Author(s):  
Bonnie J. Nagel ◽  
Arthur Ohannessian ◽  
Kevin Cummins

Past research has inconsistently distinguished the neural substrates of various types of working memory. Task design and individual performance differences are known to alter patterns of brain response during working-memory tasks. These task and individual differences may have produced discrepancies in imaging findings. This study of 50 healthy adults ( Mage = 19.6 yr., SD = .8) examined performance during various parametric manipulations of a verbal and spatial n-back working-memory task. Performance systematically dissociated on the basis of working-memory load, working memory type, and stimulus difficulty, with participants having greater accuracy but slower response time during conditions requiring verbal versus spatial working memory. These findings hold implications for cognitive and neuroimaging studies of verbal and spatial working memory and highlight the importance of considering both task design and individual behavior.


2011 ◽  
Vol 64 (11) ◽  
pp. 2168-2180 ◽  
Author(s):  
Joanna L. Brooks ◽  
Robert H. Logie ◽  
Robert McIntosh ◽  
Sergio Della Sala

Two experiments explored lateralized biases in mental representations of matrix patterns formed from aural verbal descriptions. Healthy participants listened, either monaurally or binaurally, to verbal descriptions of 6 by 3 matrix patterns and were asked to form a mental representation of each pattern. In Experiment 1, participants were asked to judge which half of the matrix, left or right, contained more filled cells and to rate the certainty of their judgement. Participants tended to judge that the left side was fuller than the right and showed significantly greater certainty when judging patterns that were fuller on the left. This tendency was particularly strong for left-ear presentation. In Experiment 2, participants conducted the same task as that in Experiment 1 but were also asked to recall the pattern for the side judged as fuller. Participants were again more certain in judging patterns that were fuller on the left—particularly for left-ear presentation—but were no more accurate in remembering the details from the left. These results suggest that the left side of the mental representation was represented more saliently but it was not remembered more accurately. We refer to this lateralized bias as “representational pseudoneglect”. Results are discussed in terms of theories of visuospatial working memory.


Sign in / Sign up

Export Citation Format

Share Document