Automating the Display of Third Person/Stealth Views of Virtual Environments

2006 ◽  
Vol 15 (6) ◽  
pp. 717-739
Author(s):  
Roy Kalawsky ◽  
Graeme Simpkin

In order to gain a greater insight into the relationships that exist between entities in three-dimensional (3D) datasets, the scientific, engineering, and arts communities are increasingly using interactive visualization and virtual reality (VR) techniques. They have realized that interactively visualizing 3D datasets from different viewpoints makes it possible to achieve a better understanding of the underlying dataset structure. Viewpoints can be either static or dynamic as in an interactive fly-through. However, unskilled users often select flight paths (or viewing situations) that cause nauseous effects that detrimentally distract the user from the task at hand. Interactions between multiple users or virtual agents in a virtual environment present further challenges because it is necessary for the user to monitor multiple activities concurrently. If the user has to make decisions based on what is taking place in a complex virtual environment, then it is very important that correct and appropriate viewpoints are maintained. For example, flight simulator debriefing tools require first and third person viewing so that the actions that have taken place can be understood. In these situations there is a need to select multiple viewpoints for each participant. Consequently (because of the high cognitive load), maintaining control over a number of different viewpoints is very challenging. Within this paper the authors describe the real-time automatic display controller they have developed for third person/stealth views of a multi-participant virtual environment—where it is important for users to gain a global and localized understanding of the tasks being performed. They discuss important cinematic conventions and how these are set in the context of characterizing a 3D communication medium, as well as determining their role for optimal viewing parameters. The real time automatic display controller is of particular benefit to applications such as scientific visualization, flight simulation, engineering/architectural modeling, scene of accident reconstruction/analysis, and other complex human-system behavior analysis applications.

2013 ◽  
Vol 373-375 ◽  
pp. 888-891
Author(s):  
Fang Liu ◽  
Wei Tong ◽  
Zhi Jun Qian ◽  
Yu Hong Dong

This paper introduced the laboratory model of Real-time monitor system based on the 3D Visualization for calefaction furnace, depicted the process of the model.In this paper we created a virtual environment and transport the real-time data which we collected from the locale to the virtual scene,to realize the real time monitor on the real environment.Through simulating in the lab,the effect of this system was realistic at the same time it arrived at the goal of better monitoring with better real-time.


2015 ◽  
Vol 75 (3) ◽  
Author(s):  
Juliana A. Abu Bakar ◽  
Chew Shiaujing ◽  
Ooi Wooisim ◽  
Pang Chongmeng ◽  
Hafizatul H. Abdrahman ◽  
...  

Virtual heritage is able to provide visual aesthetics, real-time navigation and interaction to impress and entertain users. This article describes the design and development of three dimensional (3D) virtual heritage to view and navigate the 3D representation of Malay traditional house which is rare to be found today. The Virtual Traditional House allows flexible exploration with real-time navigation in order for users to walkthrough the 3D reconstruction of the house while viewing relevant historical information at certain parts of the house. The process of design and development of Virtual Traditional House is outlined and points of particular importance are explained. The article discusses the preliminary results of user evaluation for Virtual Traditional House. Future work includes extensive user evaluation and to what extend user may absorb the historical information surfaced around the virtual environment.


1977 ◽  
Vol 131 (5) ◽  
pp. 504-513 ◽  
Author(s):  
Roger Morgan

SummaryAn account is given of impressions and observations collected during three weeks in November 1975 which the writer spent with two of his chronic schizophrenic patients in a purpose-built isolation unit inside which it was impossible to have any idea of the real time.This experience gave the observer an unusually close view of schizophrenic and institutional behaviour and some insight into the natural outcome of staff-patient interaction.


2012 ◽  
Vol 588-589 ◽  
pp. 1320-1323
Author(s):  
Li Xia Wang

This paper takes the virtual reality technology as a core, has established the housing virtual reality roaming display system, Under the premise of the detailed analysis of system architecture, We focus on how to form the terrain database and the scenery three-dimensional database by using the MultiGen Creator, and call OpenGVS through MSVC to carry on the real-time scene control and the method of the complex special effect realization.


2005 ◽  
Vol 32 (5) ◽  
pp. 777-785 ◽  
Author(s):  
Ebru Cubukcu ◽  
Jack L Nasar

Discrepanices between perceived and actual distance may affect people's spatial behavior. In a previous study Nasar, using self report of behavior, found that segmentation (measured through the number of buildings) along the route affected choice of parking garage and path from the parking garage to a destination. We recreated that same environment in a three-dimensional virtual environment and conducted a test to see whether the same factors emerged under these more controlled conditions and to see whether spatial behavior in the virtual environment accurately reflected behavior in the real environment. The results confirmed similar patterns of response in the virtual and real environments. This supports the use of virtual reality as a tool for predicting behavior in the real world and confirms increases in segmentation as related to increases in perceived distance.


2021 ◽  
Author(s):  
Ezgi Pelin Yildiz

Augmented reality is defined as the technology in which virtual objects are blended with the real world and also interact with each other. Although augmented reality applications are used in many areas, the most important of these areas is the field of education. AR technology allows the combination of real objects and virtual information in order to increase students’ interaction with physical environments and facilitate their learning. Developing technology enables students to learn complex topics in a fun and easy way through virtual reality devices. Students interact with objects in the virtual environment and can learn more about it. For example; by organizing digital tours to a museum or zoo in a completely different country, lessons can be taught in the company of a teacher as if they were there at that moment. In the light of all these, this study is a compilation study. In this context, augmented reality technologies were introduced and attention was drawn to their use in different fields of education with their examples. As a suggestion at the end of the study, it was emphasized that the prepared sections should be carefully read by the educators and put into practice in their lessons. In addition it was also pointed out that it should be preferred in order to communicate effectively with students by interacting in real time, especially during the pandemic process.


2021 ◽  
Author(s):  
Yu-Ying Chu ◽  
Jia-Ruei Yang ◽  
Han Tsung Liao ◽  
Bo-Ru Lai

Abstract This study analyzed the outcomes of zygomatico-orbital fracture reconstruction using the real-time navigation system with intraoperative three-dimensional (3D) C-arm computed tomography (CT). Fifteen patients with zygomatico-orbital or isolated orbital/zygoma fractures were enrolled in this prospective cohort. For zygoma reduction, the displacement at five key sutures and the differences between preoperative and intraoperative CT images were compared. For orbital reconstruction, the bilateral orbital volume differences in the anterior, middle, and posterior angles over the medial transitional buttress were measured. Two patients required implant adjustment once after the intraoperative 3D C-arm assessment. On comparing the preoperative and postoperative findings for the zygoma, the average sum of displacement was 19.48 (range, 5.1–34.65) vs. ±1.96 (0–3.95) mm (P < 0.001) and the deviation index was 13.56 (10–24.35) vs. 2.44 (0.6–4.85) (P < 0.001). For the orbit, the mean preoperative to postoperative bilateral orbital volume difference was 3.93 (0.35–10.95) vs. 1.05 (0.12–3.61) mm3 (P <0.001). The mean difference in the bilateral angles at the transition buttress was significantly decreased postoperatively at the middle and posterior one-third. The surgical navigation system with the intraoperative 3D C-arm can effectively improve the accuracy of zygomatico-orbital fracture reconstruction and decrease implant adjustment times.


Choonpa Igaku ◽  
2010 ◽  
Vol 37 (3) ◽  
pp. 293-304
Author(s):  
Tsutomu NAKAOKA ◽  
Yasuhisa ABE ◽  
Hiroaki IKESHIMA ◽  
Tetsuya OKADA ◽  
Kenjirou ITOU

2011 ◽  
Vol 130-134 ◽  
pp. 2581-2584
Author(s):  
Ming De Gong ◽  
Bo Tian ◽  
Yue Ning ◽  
Wei Wei Li

Digital image has a large quantity of image data and long time for transmitting. It affects the real-time of the teleoperation robot system. According to the basic principle of human eye identifying objects and image blurry processing, a new image processing method of simulating human eye range of interest (ROI) is proposed. The method uses the calibration algorithm of three-dimensional stereo target and the Gauss blurred principle. The non-ROI region is blurred to hierarchy for extracting the feature and measurement to finish the image processing tasks. The experimental results showed that the quality of the images was assured and the transmission time was shorted. The real-time of the teleoperation robot system was also guaranteed.


Sign in / Sign up

Export Citation Format

Share Document