Accurate and Efficient CPU/GPU-Based 3-DOF Haptic Rendering of Complex Static Virtual Environments

2009 ◽  
Vol 18 (5) ◽  
pp. 340-360 ◽  
Author(s):  
Jong-Phil Kim ◽  
Beom-Chan Lee ◽  
Hyungon Kim ◽  
Jaeha Kim ◽  
Jeha Ryu

This paper proposes a novel, accurate, and efficient hybrid CPU/GPU-based 3-DOF haptic rendering algorithm for highly complex and large-scale virtual environments (VEs) that may simultaneously contain different types of object data representations. In a slower rendering process on the GPU, local geometry near the haptic interaction point (HIP) is obtained in the form of six directional depth maps from virtual cameras adaptively located around the object to be touched. In a faster rendering process on the CPU, collision detection and response computations are performed using the directional depth maps without the need for any complex data hierarchy of virtual objects, or data conversion of multiple data formats. To efficiently find an ideal HIP (IHIP), the proposed algorithm uses a new “abstract” local occupancy map instance (LOMI) and the nearest neighbor search algorithm, which does not require physical memory for storing voxel types during online voxelization and reduces the search time by a factor of about 10. Finally, in order to achieve accurate haptic interaction, sub-voxelization of a voxel in LOMI is proposed. The effectiveness of the proposed algorithm is subsequently demonstrated with several benchmark examples.

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259718
Author(s):  
Nikolai Ufer ◽  
Max Simon ◽  
Sabine Lang ◽  
Björn Ommer

Finding objects and motifs across artworks is of great importance for art history as it helps to understand individual works and analyze relations between them. The advent of digitization has produced extensive digital art collections with many research opportunities. However, manual approaches are inadequate to handle this amount of data, and it requires appropriate computer-based methods to analyze them. This article presents a visual search algorithm and user interface to support art historians to find objects and motifs in extensive datasets. Artistic image collections are subject to significant domain shifts induced by large variations in styles, artistic media, and materials. This poses new challenges to most computer vision models which are trained on photographs. To alleviate this problem, we introduce a multi-style feature aggregation that projects images into the same distribution, leading to more accurate and style-invariant search results. Our retrieval system is based on a voting procedure combined with fast nearest-neighbor search and enables finding and localizing motifs within an extensive image collection in seconds. The presented approach significantly improves the state-of-the-art in terms of accuracy and search time on various datasets and applies to large and inhomogeneous collections. In addition to the search algorithm, we introduce a user interface that allows art historians to apply our algorithm in practice. The interface enables users to search for single regions, multiple regions regarding different connection types and holds an interactive feedback system to improve retrieval results further. With our methodological contribution and easy-to-use user interface, this work manifests further progress towards a computer-based analysis of visual art.


Author(s):  
Hongli Wang ◽  
Bin Guo ◽  
Jiaqi Liu ◽  
Sicong Liu ◽  
Yungang Wu ◽  
...  

Deep Neural Networks (DNNs) have made massive progress in many fields and deploying DNNs on end devices has become an emerging trend to make intelligence closer to users. However, it is challenging to deploy large-scale and computation-intensive DNNs on resource-constrained end devices due to their small size and lightweight. To this end, model partition, which aims to partition DNNs into multiple parts to realize the collaborative computing of multiple devices, has received extensive research attention. To find the optimal partition, most existing approaches need to run from scratch under given resource constraints. However, they ignore that resources of devices (e.g., storage, battery power), and performance requirements (e.g., inference latency), are often continuously changing, making the optimal partition solution change constantly during processing. Therefore, it is very important to reduce the tuning latency of model partition to realize the real-time adaption under the changing processing context. To address these problems, we propose the Context-aware Adaptive Surgery (CAS) framework to actively perceive the changing processing context, and adaptively find the appropriate partition solution in real-time. Specifically, we construct the partition state graph to comprehensively model different partition solutions of DNNs by import context resources. Then "the neighbor effect" is proposed, which provides the heuristic rule for the search process. When the processing context changes, CAS adopts the runtime search algorithm, Graph-based Adaptive DNN Surgery (GADS), to quickly find the appropriate partition that satisfies resource constraints under the guidance of the neighbor effect. The experimental results show that CAS realizes adaptively rapid tuning of the model partition solutions in 10ms scale even for large DNNs (2.25x to 221.7x search time improvement than the state-of-the-art researches), and the total inference latency still keeps the same level with baselines.


2021 ◽  
Vol 22 (5) ◽  
pp. 2659
Author(s):  
Gianluca Costamagna ◽  
Giacomo Pietro Comi ◽  
Stefania Corti

In the last decade, different research groups in the academic setting have developed induced pluripotent stem cell-based protocols to generate three-dimensional, multicellular, neural organoids. Their use to model brain biology, early neural development, and human diseases has provided new insights into the pathophysiology of neuropsychiatric and neurological disorders, including microcephaly, autism, Parkinson’s disease, and Alzheimer’s disease. However, the adoption of organoid technology for large-scale drug screening in the industry has been hampered by challenges with reproducibility, scalability, and translatability to human disease. Potential technical solutions to expand their use in drug discovery pipelines include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to create isogenic models, single-cell RNA sequencing to characterize the model at a cellular level, and machine learning to analyze complex data sets. In addition, high-content imaging, automated liquid handling, and standardized assays represent other valuable tools toward this goal. Though several open issues still hamper the full implementation of the organoid technology outside academia, rapid progress in this field will help to prompt its translation toward large-scale drug screening for neurological disorders.


2021 ◽  
Vol 11 (10) ◽  
pp. 4438
Author(s):  
Satyendra Singh ◽  
Manoj Fozdar ◽  
Hasmat Malik ◽  
Maria del Valle Fernández Moreno ◽  
Fausto Pedro García Márquez

It is expected that large-scale producers of wind energy will become dominant players in the future electricity market. However, wind power output is irregular in nature and it is subjected to numerous fluctuations. Due to the effect on the production of wind power, producing a detailed bidding strategy is becoming more complicated in the industry. Therefore, in view of these uncertainties, a competitive bidding approach in a pool-based day-ahead energy marketplace is formulated in this paper for traditional generation with wind power utilities. The profit of the generating utility is optimized by the modified gravitational search algorithm, and the Weibull distribution function is employed to represent the stochastic properties of wind speed profile. The method proposed is being investigated and simplified for the IEEE-30 and IEEE-57 frameworks. The results were compared with the results obtained with other optimization methods to validate the approach.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Carolina Lagos ◽  
Guillermo Guerrero ◽  
Enrique Cabrera ◽  
Stefanie Niklander ◽  
Franklin Johnson ◽  
...  

A novel matheuristic approach is presented and tested on a well-known optimisation problem, namely, capacitated facility location problem (CFLP). The algorithm combines local search and mathematical programming. While the local search algorithm is used to select a subset of promising facilities, mathematical programming strategies are used to solve the subproblem to optimality. Proposed local search is influenced by instance-specific information such as installation cost and the distance between customers and facilities. The algorithm is tested on large instances of the CFLP, where neither local search nor mathematical programming is able to find good quality solutions within acceptable computational times. Our approach is shown to be a very competitive alternative to solve large-scale instances for the CFLP.


2021 ◽  
pp. 0958305X2110148
Author(s):  
Mojtaba Shivaie ◽  
Mohammad Kiani-Moghaddam ◽  
Philip D Weinsier

In this study, a new bilateral equilibrium model was developed for the optimal bidding strategy of both price-taker generation companies (GenCos) and distribution companies (DisCos) that participate in a joint day-ahead energy and reserve electricity market. This model, from a new perspective, simultaneously takes into account such techno-economic-environmental measures as market power, security constraints, and environmental and loss considerations. The mathematical formulation of this new model, therefore, falls into a nonlinear, two-level optimization problem. The upper-level problem maximizes the quadratic profit functions of the GenCos and DisCos under incomplete information and passes the obtained optimal bidding strategies to the lower-level problem that clears a joint day-ahead energy and reserve electricity market. A locational marginal pricing mechanism was also considered for settling the electricity market. To solve this newly developed model, a competent multi-computational-stage, multi-dimensional, multiple-homogeneous enhanced melody search algorithm (MMM-EMSA), referred to as a symphony orchestra search algorithm (SOSA), was employed. Case studies using the IEEE 118-bus test system—a part of the American electrical power grid in the Midwestern U.S.—are provided in this paper in order to illustrate the effectiveness and capability of the model on a large-scale power grid. According to the simulation results, several conclusions can be drawn when comparing the unilateral bidding strategy: the competition among GenCos and DisCos facilitates; the improved performance of the electricity market; mitigation of the polluting atmospheric emission levels; and, the increase in total profits of the GenCos and DisCos.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3586 ◽  
Author(s):  
Sizhou Sun ◽  
Jingqi Fu ◽  
Ang Li

Given the large-scale exploitation and utilization of wind power, the problems caused by the high stochastic and random characteristics of wind speed make researchers develop more reliable and precise wind power forecasting (WPF) models. To obtain better predicting accuracy, this study proposes a novel compound WPF strategy by optimal integration of four base forecasting engines. In the forecasting process, density-based spatial clustering of applications with noise (DBSCAN) is firstly employed to identify meaningful information and discard the abnormal wind power data. To eliminate the adverse influence of the missing data on the forecasting accuracy, Lagrange interpolation method is developed to get the corrected values of the missing points. Then, the two-stage decomposition (TSD) method including ensemble empirical mode decomposition (EEMD) and wavelet transform (WT) is utilized to preprocess the wind power data. In the decomposition process, the empirical wind power data are disassembled into different intrinsic mode functions (IMFs) and one residual (Res) by EEMD, and the highest frequent time series IMF1 is further broken into different components by WT. After determination of the input matrix by a partial autocorrelation function (PACF) and normalization into [0, 1], these decomposed components are used as the input variables of all the base forecasting engines, including least square support vector machine (LSSVM), wavelet neural networks (WNN), extreme learning machine (ELM) and autoregressive integrated moving average (ARIMA), to make the multistep WPF. To avoid local optima and improve the forecasting performance, the parameters in LSSVM, ELM, and WNN are tuned by backtracking search algorithm (BSA). On this basis, BSA algorithm is also employed to optimize the weighted coefficients of the individual forecasting results that produced by the four base forecasting engines to generate an ensemble of the forecasts. In the end, case studies for a certain wind farm in China are carried out to assess the proposed forecasting strategy.


1997 ◽  
Vol 6 (5) ◽  
pp. 547-564 ◽  
Author(s):  
David R. Pratt ◽  
Shirley M. Pratt ◽  
Paul T. Barham ◽  
Randall E. Barker ◽  
Marianne S. Waldrop ◽  
...  

This paper examines the representation of humans in large-scale, networked virtual environments. Previous work done in this field is summarized, and existing problems with rendering, articulating, and networking numerous human figures in real time are explained. We have developed a system that integrates together some well-known solutions along with new ideas. Models with multiple level of details, body-tracking technology and animation libraries to specify joint angles, efficient group representations to describe multiple humans, and hierarchical network protocols have been successfully employed to increase the number of humans represented, system performance, and user interactivity. The resulting system immerses participants effectively and has numerous useful applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-23 ◽  
Author(s):  
Hao Chen ◽  
Shu Yang ◽  
Jun Li ◽  
Ning Jing

With the development of aerospace science and technology, Earth Observation Satellite cluster which consists of heterogeneous satellites with many kinds of payloads appears gradually. Compared with the traditional satellite systems, satellite cluster has some particular characteristics, such as large-scale, heterogeneous satellite platforms, various payloads, and the capacity of performing all the observation tasks. How to select a subset from satellite cluster to perform all observation tasks effectively with low cost is a new challenge arousing in the field of aerospace resource scheduling. This is the agent team formation problem for observation task-oriented satellite cluster. A mathematical scheduling model is built. Three novel algorithms, i.e., complete search algorithm, heuristic search algorithm, and swarm intelligence optimization algorithm, are proposed to solve the problem in different scales. Finally, some experiments are conducted to validate the effectiveness and practicability of our algorithms.


Sign in / Sign up

Export Citation Format

Share Document