Intra-Vehicular Free-Flyer with Manipulation Capability

2010 ◽  
Vol 24 (3) ◽  
pp. 343-358 ◽  
Author(s):  
Yuichi Tsumaki ◽  
Ikumi Maeda
2020 ◽  
Vol 08 (02) ◽  
pp. 119-147 ◽  
Author(s):  
Abdullah Mohiuddin ◽  
Taha Tarek ◽  
Yahya Zweiri ◽  
Dongming Gan

Aerial manipulation has direct application prospects in environment, construction, forestry, agriculture, search, and rescue. It can be used to pick and place objects and hence can be used for transportation of goods. Aerial manipulation can be used to perform operations in environments inaccessible or unsafe for human workers. This paper is a survey of recent research in aerial manipulation. The aerial manipulation research has diverse aspects, which include the designing of aerial manipulation platforms, manipulators, grippers, the control of aerial platform and manipulators, the interaction of aerial manipulator with the environment, through forces and torque. In particular, the review paper presents the survey of the airborne platforms that can be used for aerial manipulation including the new aerial platforms with aerial manipulation capability. We also classified the aerial grippers and aerial manipulators based on their designs and characteristics. The recent contributions regarding the control of the aerial manipulator platform is also discussed. The environment interaction of aerial manipulators is also surveyed which includes, different strategies used for end-effectors interaction with the environment, application of force, application of torque and visual servoing. A recent and growing interest of researchers about the multi-UAV collaborative aerial manipulation was also noticed and hence different strategies for collaborative aerial manipulation are also surveyed, discussed and critically analyzed. Some key challenges regarding outdoor aerial manipulation and energy constraints in aerial manipulation are also discussed.


Author(s):  
Venketesh N. Dubey ◽  
Richard M. Crowder

This paper presents a design for a reconfigurable packaging system that can handle cartons of different shape and sizes and is amenable to ever changing demands of packaging industries for perfumery and cosmetic products. The system takes structure of a multi-fingered robot hand, which can provide fine motions, and dexterous manipulation capability that may be required in a typical packaging-assembly line. The paper outlines advanced modeling and simulation undertaken to design the packaging system and discusses the experimental work carried out. The new packaging system is based on the principle of reconfigurability, that shows adaptability to simple as well as complex carton geometry. The rationale of developing such a system is presented with description of its human equivalent. The hardware and software implementations are also discussed together with directions for future research.


Author(s):  
Bin Du ◽  
Jing Zhao ◽  
Chunyu Song

A mobile manipulator typically consists of a mobile platform and a robotic manipulator mounted on the platform. The base placement of the platform has a great influence on whether the manipulator can perform a given task. In view of the issue, a new approach to optimize the base placement for a specified task is proposed in this paper. Firstly, the workspace of a redundant manipulator is investigated. The manipulation capability of the redundant manipulator is maximized based on the manipulability index through the joint self-motion of the redundant manipulator. Then the maximum manipulation capability in the specified work point is determined. Next, the relative manipulability index (RMI) is defined for analyzing manipulation capability of the manipulator in its workspace, and the global manipulability map (GMM) is presented based on the above measure. Moreover, the optimal base placement related to the given task is obtained, and the motion planning is implemented by an improved rapidly-exploring random tree (RRT) algorithm with the RMI, which can enhance the manipulation capability from the initial point to the target point. Finally, the feasibility of the proposed algorithm is illustrated with numerical simulations and experiments on the mobile manipulator.


2011 ◽  
Vol 188 ◽  
pp. 184-189
Author(s):  
Bing Hui Liu ◽  
Li Jun Yang ◽  
J. Tang ◽  
Yang Wang ◽  
Ju Long Yuan

In recent years, optical manipulators based on forces exerted by enhanced evanescent field close to near-field optical probes have provided the access to nonintrusive manipulation of nanometric particles. However, the manipulation capability is restricted to the intensity enhancement of the probe tip due to low emitting efficiency. Here a near-field optical trapping scheme using the combination of an optical fiber probe and an AFM metallic probe is developed theoretically. Calculations are made to analyze the field distributions including tip interaction and the trapping forces in the near-field region by applying a direct calculation of Maxwell stress tensor using three-dimensional FDTD. The results show that the scheme is able to trap particle at the nanoscale with lower laser intensity than that required by conventional near-field optical tweezers.


1994 ◽  
Vol 9 (5) ◽  
pp. 547-560 ◽  
Author(s):  
Claudio Melchiorri ◽  
Gabriele Vassura

2011 ◽  
Vol 291-294 ◽  
pp. 1600-1603 ◽  
Author(s):  
Zhao Hong Xu ◽  
Cheng Li Song ◽  
Shi Ju Yan

Minimally invasive robotic surgery has been investigated in various surgical application due to high accuracy, fine manipulation capability, tele-operation. Haptic feedback plays a significant role in MIS. In this paper, a dynamics model of a haptic robot is established, and PID algorithm is proposed. To prove the proposed method, an experimental system has been developed. Simulations and experiments show proposed methods is an effective method to master-slave MIRS.


1998 ◽  
Vol 35 (4) ◽  
pp. 405-412 ◽  
Author(s):  
Saroj K.L. Lal ◽  
Robyn J. Henderson ◽  
Norman Carter ◽  
Andrew Bath ◽  
Michael G. Hart ◽  
...  

Robotica ◽  
2006 ◽  
Vol 24 (6) ◽  
pp. 697-698
Author(s):  
Yanfei Liu ◽  
Adam W. Hoover ◽  
Ian D. Walker

In this paper, we propose a generic method to model the dynamic intercept and manipulation capability of vision-based industrial robot systems. In order to verify the method, we present experiments using our industrial workcell prototype to dynamically intercept and manipulate semi-randomly moving objects.


2008 ◽  
Vol 130 (7) ◽  
Author(s):  
Pinhas Ben-Tzvi ◽  
Andrew A. Goldenberg ◽  
Jean W. Zu

This paper presents a novel design paradigm as well as the related detailed mechanical design embodiment of a mechanically hybrid mobile robot. The robot is composed of a combination of parallel and serially connected links resulting in a hybrid mechanism that consists of a mobile robot platform for locomotion and a manipulator arm for manipulation. Unlike most other mobile robot designs that have a separate manipulator arm module attached on top of the mobile platform, this design has the ability to simultaneously and interchangeably provide locomotion and manipulation capability. This robot enhanced functionality is complemented by an interchangeable track tension and suspension mechanism that is embedded in some of the mobile robot links to form the locomotion subsystem of the robot. The mechanical design was analyzed with a virtual prototype that was developed with MSC ADAMS software. The simulation was used to study the robot’s enhanced mobility characteristics through animations of different possible tasks that require various locomotion and manipulation capabilities. The design was optimized by defining suitable and optimal operating parameters including weight optimization and proper component selection. Moreover, the simulation enabled us to define motor torque requirements and maximize end-effector payload capacity for different robot configurations. Visualization of the mobile robot on different types of virtual terrains such as flat roads, obstacles, stairs, ditches, and ramps has helped in determining the mobile robot’s performance, and final generation of specifications for manufacturing a full scale prototype.


Author(s):  
Jingjun Yu ◽  
Zhongxiang Zhang ◽  
Xu Pei

In this paper, kinematic analysis and motion planning of a quadruped robot are presented by regarding the robot as an equivalent parallel platform-type mechanism with RRRS limb structure. Based on screw theory, the mobility of the quadruped robot with different touchdown legs is analyzed, and proves that the design for degree of freedom (DOF) is available. Base on the established kinematic model of a single leg in terms of POE formula of screw theory, several typical patterns of walking motion planning are implemented and verified by the ADAMS-based simulation. In order to show a good maneuverability and potential manipulation capability of the quadruped robot as a parallel manipulator, the gait planning reflecting two rotating motion patterns (including the rotating motion and walking motion) is modeled and simulated by kinematics of the equivalent parallel manipulators. Finally, a prototype of the quadruped robot has been built. Experimental test shows the practical walking and rotating ability as desired.


Sign in / Sign up

Export Citation Format

Share Document