The karyology of Vipera aspis, V. atra, V. hugyi, and Cerastes vipera

2006 ◽  
Vol 27 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Gaetano Odierna ◽  
Augusto Gentilli ◽  
Marco Zuffi ◽  
Gennaro Aprea

AbstractIn the current paper we show the results obtained using standard and banding staining methods (Ag-NOR-, CMA3-, C-banding and sequential colorations (or Alu I digestions) + CMA3 + DAPI) in specimens of Cerastes vipera, Vipera aspis, V. atra, and V. hugyi. Cerastes vipera presented chromosomal characters, primitive in snakes, as a karyotype of 2n = 36 chromosomes, with 16 biarmed macrochromosomes and 20 microchromosomes, NORs on one microchromosome pair and absence of cytologically evident sex chromosomes, at least with the methods used. The three taxa of Vipera studied showed chromosomal characters either derived, or primitive or at an initial stage of differentiation. All three species showed a karyotype (derived) of 2n = 42 chromosomes with 22 macro- and 20 micro-chromosomes; they all showed NORs on one micro-chromosome pair and presented Z and W chromosomes at an initial stage of differentiation. Sexchromosomes Z and W, were in fact homomorphic, but the former was near all euchromatic, while the W chromosome was almost completely heterochromatic. All the three taxa of Vipera resulted, however, karyologically diversified, mainly due to the number of macro-chromosomes pairs with a centromeric, CMA3 positive heterochromatin: almost all the pairs in V. aspis, two pairs in V. atra and absent in V. hugyi.

1975 ◽  
Vol 17 (2) ◽  
pp. 187-191 ◽  
Author(s):  
W. Au ◽  
N. S. Fechheimer ◽  
S. Soukup

Karyotypes of five American bald eagles (Haliaeetus leucocephalus and H. alacanus) are compared. All had 2n = 66 chromosomes which fell into 3 size groups: A, 20 pairs of biarmed chromosomes; B, 9 pairs of acrocentric chromosomes and C, 4 pairs of microchromosomes. C-banding was done in two eagles and a heterochromatic W chromosome was identified in a presumptive female. The ZZ and ZW chromosomes could be identified in the karyotypes.


2018 ◽  
Vol 154 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Beata Grzywacz ◽  
Haruki Tatsuta ◽  
Kei-ichiro Shikata ◽  
Elżbieta Warchałowska-Śliwa

In the present paper, karyotypes of 7 Japanese Podismini species, Anapodisma beybienkoi, Fruhstorferiola okinawaensis, Parapodisma caelestis, P. mikado, P. setouchiensis, P. tenryuensis, and Sinopodisma punctata (2n♂ = 21, all acrocentric), are described and compared on the basis of conventional (C-banding, DAPI/CMA3-staining, Ag-NOR) and molecular (FISH with 18S rDNA and telomeric probes) cytogenetic staining methods. This is the first study to report karyotypes of A. beybienkoi and P. caelestis. Differential staining techniques showed karyotypic diversity in these species. The number of 18S rDNA signals ranged from 2 to 6, and the signals were located on the autosomes or sex chromosomes. In all species, clusters of rDNA coincided with Ag-NORs. Telomeric signals occurred at the chromosome ends at the pachytene stage and seldom at other stages of meiosis. Paracentromeric and some distal and interstitial blocks of constitutive heterochromatin were detected in the chromosomes of Anapodisma, Fruhstorferiola, and Parapodisma species. Staining with DAPI and CMA3 revealed 2 groups of heterochromatin composition. In addition, intraspecific differences in the number of rDNA clusters and C-bands were observed within Parapodisma species. Based on the evidence of cytogenetic characteristics, the monophyly of Tonkinacridina cannot be supported.


1999 ◽  
Vol 22 (3) ◽  
pp. 351-356 ◽  
Author(s):  
Eliana Feldberg ◽  
Jorge Ivan Rebelo Porto ◽  
Elen Bethlen Pedraça dos Santos ◽  
Francisco Carlos Souza Valentim

Cytogenetic characterization of two freshwater sciaenid species from the genus Plagioscion (P. squamosissimus and Plagioscion sp.) was obtained for the first time. Giemsa staining, Ag-NOR and C-banding revealed that both species presented 2n = 48 chromosomes (almost all acrocentric). Single NORs and heterochromatin were found mainly at the pericentromeric position. Karyotypic formulae and NOR location proved to be valuable in showing both interspecific and intraspecific differences. All chromosomes were acrocentric in P. squamosissimus. NORs were located at proximal positions on the long arms of the last chromosome pair of the complement, and were heteromorphic due to size differences. Such heteromorphic NORs seem to be associated with each population sampled. Plagioscion sp. presented two cytotypes: cytotype a (2M + 46A) and cytotype b (48A). In both cytotypes, NOR-bearing chromosomes were located at the proximal position on the long arms of the first chromosome pair of the complement. However, NOR-bearing chromosomes were metacentric in cytotype a and acrocentric in cytotype b.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 156
Author(s):  
Lorenzo Clemente ◽  
Sofia Mazzoleni ◽  
Eleonora Pensabene ◽  
Tomáš Protiva ◽  
Philipp Wagner ◽  
...  

The Asian box turtle genus Cuora currently comprises 13 species with a wide distribution in Southeast Asia, including China and the islands of Indonesia and Philippines. The populations of these species are rapidly declining due to human pressure, including pollution, habitat loss, and harvesting for food consumption. Notably, the IUCN Red List identifies almost all species of the genus Cuora as Endangered (EN) or Critically Endangered (CR). In this study, we explore the karyotypes of 10 Cuora species with conventional (Giemsa staining, C-banding, karyogram reconstruction) and molecular cytogenetic methods (in situ hybridization with probes for rDNA loci and telomeric repeats). Our study reveals a diploid chromosome number of 2n = 52 chromosomes in all studied species, with karyotypes of similar chromosomal morphology. In all examined species, rDNA loci are detected at a single medium-sized chromosome pair and the telomeric repeats are restricted to the expected terminal position across all chromosomes. In contrast to a previous report, sex chromosomes are neither detected in Cuoragalbinifrons nor in any other species. Therefore, we assume that these turtles have either environmental sex determination or genotypic sex determination with poorly differentiated sex chromosomes. The conservation of genome organization could explain the numerous observed cases of interspecific hybridization both within the genus Cuora and across geoemydid turtles.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lingzhan Xue ◽  
Yu Gao ◽  
Meiying Wu ◽  
Tian Tian ◽  
Haiping Fan ◽  
...  

Abstract Background The origin of sex chromosomes requires the establishment of recombination suppression between the proto-sex chromosomes. In many fish species, the sex chromosome pair is homomorphic with a recent origin, providing species for studying how and why recombination suppression evolved in the initial stages of sex chromosome differentiation, but this requires accurate sequence assembly of the X and Y (or Z and W) chromosomes, which may be difficult if they are recently diverged. Results Here we produce a haplotype-resolved genome assembly of zig-zag eel (Mastacembelus armatus), an aquaculture fish, at the chromosomal scale. The diploid assembly is nearly gap-free, and in most chromosomes, we resolve the centromeric and subtelomeric heterochromatic sequences. In particular, the Y chromosome, including its highly repetitive short arm, has zero gaps. Using resequencing data, we identify a ~7 Mb fully sex-linked region (SLR), spanning the sex chromosome centromere and almost entirely embedded in the pericentromeric heterochromatin. The SLRs on the X and Y chromosomes are almost identical in sequence and gene content, but both are repetitive and heterochromatic, consistent with zero or low recombination. We further identify an HMG-domain containing gene HMGN6 in the SLR as a candidate sex-determining gene that is expressed at the onset of testis development. Conclusions Our study supports the idea that preexisting regions of low recombination, such as pericentromeric regions, can give rise to SLR in the absence of structural variations between the proto-sex chromosomes.


2005 ◽  
Vol 3 (2) ◽  
pp. 285-290 ◽  
Author(s):  
Caroline Garcia ◽  
Orlando Moreira Filho

Karyotypes and other chromosomal markers were investigated in three species of the catfish genus Pimelodus, namely P. fur, P. maculatus and Pimelodus sp., from municipality of Três Marias, Minas Gerais, Brazil, using differential staining techniques (C-banding, Silver nitrate and CMA3 staining). The diploid chromosome number was 2n = 56 in P. maculatus and Pimelodus sp., while in P. fur 2n = 54. The karyotype of P. fur consisted in 32M + 8SM + 6ST + 8A with fundamental number (NF) of 100, that of P. maculatus 32M + 12SM + 12A with NF = 112, and that of Pimelodus sp. had 32M + 12Sm + 6ST + 6A with NF = 106.The nucleolar organizer regions (NORs) in all three species were invariably detected in telomeres of longer arm of the 20th chromosome pair. These sites were also positive after CMA3 and C-banding. No heteromorphic sex chromosomes were detected and C-banding pattern was species specific. Inferences about the karyotype differentiation in Pimelodus and putative chromosomal rearrangements are hypohesized.


1977 ◽  
Vol 19 (3) ◽  
pp. 537-541 ◽  
Author(s):  
J. E. K. Cooper

The distribution of constitutive heterochromatin has been examined by C-banding in two somatic cell lines, grown in vitro, from a female Microtus agrestis. One line retains one intact X chromosome together with the short arm of the other X chromosome, while the other cell line retains only the short arm of one X chromosome. Thus, each cell line has lost substantial amounts of heterochromatin from the sex chromosomes, but this material has been deleted from the cells, and not translocated to other chromosomes. Nonetheless, both cell lines continue to propagate well in vitro.


Evolution ◽  
2014 ◽  
Vol 68 (11) ◽  
pp. 3281-3295 ◽  
Author(s):  
Alison E. Wright ◽  
Peter W. Harrison ◽  
Stephen H. Montgomery ◽  
Marie A. Pointer ◽  
Judith E. Mank

2020 ◽  
Author(s):  
Zahida Sultanova ◽  
Philip A. Downing ◽  
Pau Carazo

ABSTRACTSex-specific lifespans are ubiquitous across the tree of life and exhibit broad taxonomic patterns that remain a puzzle, such as males living longer than females in birds and vice versa in mammals. The prevailing “unguarded-X” hypothesis (UXh) explains this by differential expression of recessive mutations in the X/Z chromosome of the heterogametic sex (e.g., females in birds and males in mammals), but has only received indirect support to date. An alternative hypothesis is that the accumulation of deleterious mutations and repetitive elements on the Y/W chromosome might lower the survival of the heterogametic sex (“toxic Y” hypothesis). Here, we report lower survival of the heterogametic relative to the homogametic sex across 138 species of birds, mammals, reptiles and amphibians, as expected if sex chromosomes shape sex-specific lifespans. We then analysed bird and mammal karyotypes and found that the relative sizes of the X and Z chromosomes are not associated with sex-specific lifespans, contrary to UXh predictions. In contrast, we found that Y size correlates negatively with male survival in mammals, where toxic Y effects are expected to be particularly strong. This suggests that small Y chromosomes benefit male lifespans. Our results confirm the role of sex chromosomes in explaining sex differences in lifespan, but indicate that, at least in mammals, this is better explained by “toxic Y” rather than UXh effects.


2021 ◽  
Vol 16 (1) ◽  
pp. 37-44
Author(s):  
Marcello Mezzasalma ◽  
Gaetano Odierna

The smooth snake Coronella austriaca is a widespread Palearctic colubrid species. The species has been the subject of several molecular and phylogeographic studies which highlighted the occurrence of distinct genetic lineages in different areas of the species distribution, but scarce cytogenetic data are currently available on the species. In this paper we present a molecular and karyological study performed with several banding, staining methods and NOR-FISH on samples of C. austriaca from different geographical areas (Italy and Greece) of the species distribution. The molecular and phylogenetic analysis unambiguously placed the studied samples in different clades with a clear geographical pattern. The karyotype of the two female samples studied was composed of 2n = 36 chromosomes with 16 macro- and 20 microchromosomes and a mix of plesiomorphic and derivate chromosome features. All macrochromosomes were biarmed with the exception of pair 5 that was telocentric. NORs were detected on a microchromosome pair. In both females, the pair 4 was heteromorphic (and completely heterochromatic after C-banding in the Italian female), representing the first report of a ZZ/ZW sex chromosome system with female heterogamety in C. austriaca. In addition, the W chromosome showed a different morphology between the two female studied (submetacentric and subtelocentric), highlighting the occurrence of a chromosomal diversification among distinct geographical areas of the species distribution and further supporting that the species contains different diverging evolutionary clades.


Sign in / Sign up

Export Citation Format

Share Document