Sexual dimorphism in Xenodon neuwiedii skull revealed by geometric morphometrics (Serpentes; Dipsadidae)

2019 ◽  
Vol 40 (4) ◽  
pp. 461-474 ◽  
Author(s):  
Roberta Azeredo Murta-Fonseca ◽  
Alessandra Machado ◽  
Ricardo Tadeu Lopes ◽  
Daniel Silva Fernandes

Abstract Sexual dimorphism in snake head/skull is poorly known, although analyses in other vertebrate groups have already pointed this kind of morphological difference. Herein we evaluated the existence of sexual dimorphism in the skull of Xenodon neuwiedii through Geometric Morphometrics (GM). We found that females have larger skulls than males using centroid size data. Considering the ventral view of the palatomaxillary apparatus, compared to females, males tend to have longer maxilla, ectopterygoid slightly laterally shifted, palatine slightly shorter, and longer pterygoid. For the dorsal view, males showed larger snout, more oblique frontoparietal suture, posterior region of the skull more tapered, larger supraoccipital, and larger and more oblique supratemporals. Xenodon neuwiedii showed static allometry only for the symmetric component of the dorsal view, with 9.7% of shape variation explained by size. The present study is the first evaluating and describing sexual dimorphism in skull shape for snakes independently of size. We compared our results with other studies and concluded that to accurately perform intraspecific analyses or to better understand sexual and/or natural selection, sexual dimorphism should be considered, even for structures (e.g. skull) that are traditionally not used for this purpose.

2008 ◽  
Vol 68 (3) ◽  
pp. 623-631 ◽  
Author(s):  
R. Bornholdt ◽  
LR. Oliveira ◽  
ME. Fabián

We present a quantitative analysis of sexual dimorphism and geographic variation in the skull of Myotis nigricans (Schinz, 1821) assessed by geometric morphometrics. Differences in size and shape of skulls were investigated using 30 landmarks plotted on two-dimensional images of lateral and ventral views. Results of geometric morphometrics revealed sexual dimorphism in the centroid size of the skull in both views. Females were larger than males. Nevertheless, there was no sexual dimorphism in skull shape of M. nigricans. Geographic variation was detected in size and shape of the skull. South Brazilian specimens were significantly larger than Ceará specimens only in the lateral view. Differences in skull shape were statistically significant in both views: specimens from South Brazil were brevirostri and presented a more expanded skull in the posterior region while Ceará specimens were longirostri and do not present any expansion in the brain case. Ecological factors for these phenomena are discussed in the text.


2013 ◽  
Vol 16 (2) ◽  
pp. 590-600 ◽  
Author(s):  
Paul G. Sanfilippo ◽  
Alex W. Hewitt ◽  
Jenny A. Mountain ◽  
David A. Mackey

Twin studies are extremely useful for investigating hypotheses of genetic influence on a range of behavioral and physical traits in humans. Studies of physical traits, however, are usually limited to size-related biological characteristics because it is inherently difficult to quantify the morphological counterpart – shape. In recent years, the development of geometry-preserving analytical techniques built upon multivariate statistical methodologies has produced a new discipline in biological shape analysis known as geometric morphometrics. In this study of hand shape analysis, we introduce the reader already familiar with the field of twin research to the potential utility of geometric morphometrics and demonstrate the cross-discipline applicability of methods. We also investigate and compare the efficacy of the 2D:4D ratio, a commonly used marker of sexual dimorphism, to the fully multivariate approach of shape analysis in discriminating between male and female sex. Studies of biological shape variation utilizing geometric morphometric techniques may be completed with software freely available on the Internet and time invested to master the small learning curve in concepts and theory.


Zootaxa ◽  
2016 ◽  
Vol 4196 (1) ◽  
pp. 120 ◽  
Author(s):  
DANIELA ELIANA SGANGA ◽  
LUCAS RAUL FERNANDEZ PIANA ◽  
LAURA SUSANA LÓPEZ GRECO

Neocaridina davidi is a caridean shrimp that has gained popularity in recent years as an ornamental species. Using geometric morphometrics, we investigated sexual dimorphism in carapace and second abdominal segment shape of N. davidi. Adult females displayed a more elongated carapace and a longer rostrum than males. However, male carapace shape was similar to that of juvenile females. The second abdominal pleura was more elongated and wider in adult females than in males. Significant differences were found in centroid size for the carapace and the second abdominal segment between sexes, which is consistent with sexual size dimorphism. These results support the hypothesis of a “pure search” mating system in N. davidi, where small males search actively for receptive females, and after insemination they continue searching. 


2017 ◽  
Vol 57 (35) ◽  
pp. 451 ◽  
Author(s):  
Pere Miquel Parés-Casanova

The mammalian masticatory apparatus is a highly plastic region of the skull and thus subjected to singular ontogenetic trajectories. Here we present the first descriptive allometric pattern study of mandible among the capybara (Hydrochoerus hydrochaeris), based on the study of 37 specimens. Allometric changes in shape were analyzed using geometric morphometrics techniques and the pattern of allometry was visualized. A multivariate regression of the shape component on size, estimated by the logarithm of centroid size, appeared as highly significant. Therefore, a major component of shape variation in these mandibles is related to the attainment of adult size (i.e., growth).


2019 ◽  
Vol 129 (2) ◽  
pp. 288-314
Author(s):  
Cassiane Furlan Lopes ◽  
Fabiano Stefanello ◽  
Christian Bugs ◽  
Cristina Stenert ◽  
Leonardo Maltchik ◽  
...  

Abstract The structures involved in parental care are often dimorphic. Female Belostoma angustum water bugs lay eggs on the hemelytra of their mates, where the eggs are brooded until hatching. Males use their hind legs to carry, aerate and protect the eggs. After controlling for covariance between variables, we fitted a series of structural equation models (SEMs) and evaluated the existence of sexual dimorphism in the size of the body and hind legs, in the shape and centroid size of the hemelytrum, and among the static allometry slopes of the size-related differences. Landmarks were used to capture phenotypic variation, by eliminating all non-shape variations with a Procrustes superimposition. Neither the shape of the hemelytrum nor its centroid size was related significantly to the aforementioned linear body measurements. Instead, the differences in the size of the hind legs were mediated by body dimensions only in males. We also found that males were wider and had longer heads than females, according to the SEM intercept values. Our findings suggest that sexual dimorphism in B. angustum may be related to a balance between sexual role reversal and viability costs.


Zoology ◽  
2010 ◽  
Vol 113 (3) ◽  
pp. 168-174 ◽  
Author(s):  
Katarina Ljubisavljević ◽  
Aleksandar Urošević ◽  
Ivan Aleksić ◽  
Ana Ivanović

2019 ◽  
Vol 69 (4) ◽  
pp. 483-496 ◽  
Author(s):  
Bojan S. Ilić ◽  
Vukica D. Vujić ◽  
Zvezdana S. Jovanović ◽  
Sofija B. Pavković-Lučić ◽  
Boris D. Dudić ◽  
...  

Abstract Sexual size and shape dimorphism (SSD and SShD) are understudied phenomena in millipedes. In the present study, we investigated both kinds of sexual dimorphism in some morphological traits, as well as whether shape of the morphological traits varied more than their size. Three julidan species, viz., Pachyiulus hungaricus (Karsch, 1881), Megaphyllum unilineatum (C.L. Koch, 1838), and M. bosniense (Verhoeff, 1897), were used for these purposes. By means of traditional and geometric morphometrics, we found that SSD exists in linear measurements of the tested morphological traits, as well as SShD of the legs in all analysed species. Also, SSD of antennal centroid size was detected in P. hungaricus and M. unilineatum, in addition to SShD of antennae in P. hungaricus and M. bosniense. Our results indicate that morphological intersexual differences are species-specific and that the shape of some morphological traits varies more than the size of centroids of the same structures.


Author(s):  
Valentina P. Vetrova ◽  
◽  
Alexey P. Barchenkov ◽  
Nadezhda V. Sinelnikova ◽  
◽  
...  

Geometric morphometric analysis of shape variation in the cone scales of two closely related larch species, Larix dahurica Laws. (=Larix gmelinii (Rupr.) Rupr) and L. cajanderi Mayr, was carried out. The data on the taxonomy and distribution of L. dahurica and L. cajanderi are contradictory. The taxonomic status of L. cajanderi has been confirmed by the genetic and morphological studies performed in Russia and based on considerable evidence, but the species has not been recognized internationally, being considered as a synonym of Larix gmelinii var. gmelinii. In the systematics of larch, morphological characters of the generative organs are mainly used as diagnostic markers, among the most important being the shape variation of the cone scales. The aim of this study was to test geometric morphometrics as a tool for analyzing differentiation of L. dahurica and L. cajanderi in the shape of their cone scales. Characterization of shape variations in cone scales using geometric morphometric methods consists in digitizing points along an outline of scales followed by analysis of partial warps, describing individual differences in coordinates of the outline points. We studied the populations of L. dahurica from Evenkia and the Trans-Baikal region and six L. cajanderi populations from Yakutia and Magadan Oblast. In each population, we analyzed samples of 100-150 cones collected from 20-30 trees. Scales taken from the middle part of the cones were scanned using an Epson Perfection V500 Photo. On the scanned images, outline points were placed with a TPSDig program (Rolf, 2010), using angular algorithm (Oreshkova et al., 2015). The data were processed and analyzed using Integrated Morphometrics Programs (IMP) software (http://www.canisius.edu/~sheets/ morphsoft.html, Sheets, 2001), following the guidelines on geometric morphometrics in biology (Pavlinov, Mikeshina, 2002; Zelditch et al., 2004). Initial coordinates of the scale landmarks were aligned with the mean structure for L. dahurica and L. cajanderi cone scales using Procrustes superimposition in the CoordGen6 program. PCA based on covariances of partial warp scores was applied to reveal directions of variation in the shape of the cone scales. The relative deformations of the cone scales (PCA scores) were used as shape variables for statistical comparisons of these two larch species with canonical discriminant analysis. Morphotypes of the cone scales were distinguished in L. dahurica populations by pairwise comparison of samples from trees in the TwoGroup6h program using Bootstrap resampling-based Goodall’s F-test (Sheets, 2001). Samples from the trees in which the cone scales differed significantly (p < 0.01) were considered to belong to different morphotypes. Morphotypes distinguished in L. dahurica populations were compared with the morphotypes that we had previously determined in L. cajanderi populations. The composition and the frequency of occurrence of morphotypes were used to determine phenotypic distances between populations (Zhivotovskii, 1991). Multidimensional scaling matrix of the phenotypic distances was applied for ordination of larch populations. In this research, we revealed differentiation of L. dahurica and L. cajanderi using geometric morphometric analysis of the shape variation of cone scales. The results of PCA of partial warp scores exposed four principal components, which account for 90% of total explained variance in the shape of the cone scales in the two larch species. Graphical representations of these shape transformations in the vector form characterized directions of shape variability in scales corresponding to the maximum and minimum values of four principal components (See Fig. 2). PCA-ordination of the larch populations revealed some difference in the shape variation of the cone scales in L. dahurica and L. cajanderi (See Fig. 3). The results of canonical discriminant analysis of relative deformations of scales showed differentiation of the populations of the two larch species (See Fig. 4). Eleven morphotypes were identified in L. dahurica cones from Evenkia and nine morphotypes in the Ingoda population, three of the morphotypes being common for both populations (See Fig. 5). The shape of L. dahurica cone scales varied from spatulate to oval and their apical margins from weakly sinuate to distinctly sinuate. The Trans-Baikal population was dominated by scales with obtuse (truncate) and rounded apexes. The obtained morphotypes were compared with 25 cone scale morphotypes previously distinguished in the Yakut and the Magadan L. cajanderi populations (See Fig. 3). Four similar morphotypes of cone scales were revealed in the North-Yeniseisk population of L. dahurica and the Yakut populations of L. cajanderi. The differences between them in the populations of the two larch species were nonsignificant (p > 0.01). All morphotypes of cone scales from the Ingoda population of L. dahurica differed significantly from L. cajanderi cone scale morphotypes. The results of multidimensional scaling phenotypic distance matrix calculated based on the similarity of morphotypes of L. dahurica and L. cajanderi populations were consistent with the results of their differentiation based on relative deformations of scales obtained using canonical discriminant analysis (See Fig. 4 and Fig. 7). In spite of the differences in the shape of the cone scales between the North-Yeniseisk and the Trans-Baikal populations of L. dahurica, they both differed from L. cajanderi populations. Thus, phenotypic analysis confirmed differentiation of these two larch species. Despite the similarities between a number of morphotypes, the Yakut L. cajanderi populations were differentiated from L. dahurica populations. Significant differences were noted between intraspecific groups: between L. cajanderi populations from Okhotsk-Kolyma Upland and Yakutia and between L. dahurica populations from Evenkia and the Trans-Baikal region (See Fig. 4). The similarities between species and intraspecific differences may be attributed to the ongoing processes of hybridization and species formation in the region where the ranges of the larches overlap with the ranges of L. czekanowskii Szafer and L. dahurica×L. cajanderi hybrids. Geometric morphometrics can be used as an effective tool for analyzing differentiation of L. dahurica and L. cajanderi in the shape of their cone scales.


2021 ◽  
Vol 11 (17) ◽  
pp. 7848
Author(s):  
Darío Herranz-Rodrigo ◽  
Silvia J. Tardáguila-Giacomozzi ◽  
Lloyd A. Courtenay ◽  
Juan-José Rodríguez-Alba ◽  
Antonio Garrucho ◽  
...  

Recent studies using geometric morphometrics for taphonomy have yielded interesting results, opening new horizons of research in both archaeological and paleontological sites. Here we present the analysis of tooth pits left by male and female individuals of two different carnivore species (Panthera tigris and Panthera pardus) in order to see if sexual dimorphism influences the morphology of tooth pit marks. In the process, 3D-scanning and applied statistics were used. Based on samples derived from two individuals of different sexes, the present results indicate sexual dimorphism in these felid species to not be a conditioning factor of tooth pit morphology.


2019 ◽  
Author(s):  
Vera Weisbecker ◽  
Thomas Guillerme ◽  
Cruise Speck ◽  
Emma Sherratt ◽  
Hyab Mehari Abraha ◽  
...  

AbstractBackgroundWithin-species skull shape variation of marsupial mammals is widely considered low and strongly size-dependent (allometric), possibly due to developmental constraints arising from the altricial birth of marsupials. However, species whose skulls are impacted by strong muscular stresses – particularly those produced through mastication of tough food items – may not display such intrinsic patterns very clearly because of the known plastic response of bone to muscle activity of the individual. In such cases, shape variation should not be dominated by allometry; ordination of shape in a geometric morphometric context through principal component analysis (PCA) should reveal main variation in areas under masticatory stress (incisor region/zygomatic arches/mandibular ramus); but this main variation should emerge from high individual variability and thus have low eigenvalues.ResultsWe assessed the evidence for high individual variation through 3D geometric morphometric shape analysis of crania and mandibles of thre species of grazing-specialized wombats, whose diet of tough grasses puts considerable strain on their masticatory system. As expected, we found little allometry and low Principal Component 1 (PC1) eigenvalues within crania and mandibles of all three species. Also as expected, the main variation was in the muzzle, zygomatic arches, and masticatory muscle attachments of the mandibular ramus. We then implemented a new test to ask if the landmark variation reflected on PC1 was reflected in individuals with opposite PC1 scores and with opposite shapes in Procrustes space. This showed that correspondence between individual and ordinated shape variation was limited, indicating high levels of individual variability in the masticatory apparatus.DiscussionOur results are inconsistent with hypotheses that skull shape variation within marsupial species reflects a constraint pattern. Rather, they support suggestions that individual plasticity can be an important determinant of within-species shape variation in marsupials (and possibly other mammals) with high masticatory stresses, making it difficult to understand the degree to which intrinsic constraint act on shape variation at the within-species level. We conclude that studies that link micro- and macroevolutionary patterns of shape variation might benefit from a focus on species with low-impact mastication, such as carnivorous or frugivorous species.


Sign in / Sign up

Export Citation Format

Share Document