Hydrosol deposition in porous media: the effect of surface interactions

2000 ◽  
Vol 11 (1) ◽  
pp. 9-56 ◽  
Author(s):  
Chi Tien
Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 664 ◽  
Author(s):  
Jorge Avendaño ◽  
Nicolle Lima ◽  
Antonio Quevedo ◽  
Marcio Carvalho

Wettability has a dramatic impact on fluid displacement in porous media. The pore level physics of one liquid being displaced by another is a strong function of the wetting characteristics of the channel walls. However, the quantification of the effect is still not clear. Conflicting data have shown that in some oil displacement experiments in rocks, the volume of trapped oil falls as the porous media becomes less water-wet, while in some microfluidic experiments the volume of residual oil is higher in oil-wet media. The reasons for this discrepancy are not fully understood. In this study, we analyzed oil displacement by water injection in two microfluidic porous media with different wettability characteristics that had capillaries with constrictions. The resulting oil ganglia size distribution at the end of water injection was quantified by image processing. The results show that in the oil-wet porous media, the displacement front was more uniform and the final volume of remaining oil was smaller, with a much smaller number of large oil ganglia and a larger number of small oil ganglia, when compared to the water-wet media.


2013 ◽  
Vol 15 (8) ◽  
Author(s):  
Yonggang Wang ◽  
Huiguang Zhu ◽  
Matthew D. Becker ◽  
Jessica Englehart ◽  
Linda M. Abriola ◽  
...  

2005 ◽  
Vol 890 ◽  
Author(s):  
Chunhua Li ◽  
Jun Jiang ◽  
Miriam J. Rafailovich ◽  
Jonathan C. Sokolov

ABSTRACTPreviously, we reported that the viscosity of a polymer film can be measured in situ by observing the liquid-liquid dewetting of polymer bilayer films. In this study, we use the technique to investigate the effect of film thickness and surface interactions on the effective viscosity of polymer thin films. We found that the effective viscosity increases dramatically with decreasing the film thickness. We attribute this to the pinning of the polymer chains at the strongly interacting polymer/Silicon interface.


Fractals ◽  
2019 ◽  
Vol 27 (07) ◽  
pp. 1950116 ◽  
Author(s):  
BOQI XIAO ◽  
YIDAN ZHANG ◽  
YAN WANG ◽  
GUOPING JIANG ◽  
MINGCHAO LIANG ◽  
...  

In this paper, fluid transport through fibrous porous media is studied by the fractal theory with a focus on the effect of surface roughness of capillaries. A fractal model for Kozeny–Carman (KC) constant and dimensionless permeability of fibrous porous media with roughened surfaces is derived. The determined KC constant and dimensionless permeability of fibrous porous media with roughened surfaces are in good agreement with available experimental data and existing models reported in the literature. It is found that the KC constant of fibrous porous media with roughened surfaces increases with the increase of relative roughness, porosity, area fractal dimension of pore and tortuosity fractal dimension, respectively. Besides, it is seen that the dimensionless permeability of fibrous porous media with roughened surfaces decreases with increasing relative roughness and tortuosity fractal dimension. However, it is observed that the dimensionless permeability of fibrous porous media with roughened surfaces increases with porosity. With the proposed fractal model, the physical mechanisms of fluids transport through fibrous porous media are better elucidated.


Sign in / Sign up

Export Citation Format

Share Document