scholarly journals On the monophyly of subfamily Tectarioideae (Polypodiaceae) and the phylogenetic placement of some associated fern genera 

Phytotaxa ◽  
2014 ◽  
Vol 164 (1) ◽  
pp. 1 ◽  
Author(s):  
FA-GUO WANG ◽  
SAM BARRATT ◽  
WILFREDO FALCÓN ◽  
MICHAEL F. FAY ◽  
SAMULI LEHTONEN ◽  
...  

The fern genus Tectaria has generally been placed in the family Tectariaceae or in subfamily Tectarioideae (placed in Dennstaedtiaceae, Dryopteridaceae or Polypodiaceae), both of which have been variously circumscribed in the past. Here we study for the first time the phylogenetic relationships of the associated genera Hypoderris (endemic to the Caribbean), Cionidium (endemic to New Caledonia) and Pseudotectaria (endemic to Madagascar and Comoros) using DNA sequence data. Based on a broad sampling of 72 species of eupolypods I (= Polypodiaceae sensu lato) and three plastid DNA regions (atpA, rbcL and the trnL-F intergenic spacer) we were able to place the three previously unsampled genera. Our results show that Cionidium, like Ctenitopsis, Fadyenia, Hemigramma and Quercifilix, is embedded in Tectaria, and the monophyly of Tectaria is therefore corroborated only if these segregate genera are included. Hypoderris is sister to Tectaria brauniana and together they are sister to Triplophyllum, which was found to be monophyletic. Despite their morphological similarity with Tectaria, the genera Pleocnemia and Pseudotectaria were placed in Dryopteridoideae. Polypodiaceae subfamily Tectarioideae (former family Tectariaceae) is hereby defined to include Arthropteris, Hypoderris, Pteridrys, Tectaria and Triplophyllum. Aenigmopteris may also belong here, but this genus remains unsampled.

2010 ◽  
Vol 23 (4) ◽  
pp. 229 ◽  
Author(s):  
Xiaolan He ◽  
David Glenny

The monotypic genus Perssoniella with P. vitreocincta Herzog, endemic to New Caledonia, possesses a series of unique morphological characters and it has been assumed that the genus, assigned to the family Perssoniellaceae and suborder Perssoniellineae, is very isolated but sister to the family Schistochilaceae. The systematic identity of Perssoniella vitreocincta was studied using DNA sequence data for the chloroplast rbcL, rps4 and trnL-F regions. Our analyses placed Perssoniella vitreocincta within the family Schistochilaceae, and within Schistochila itself, with strong support. It suggests that retaining Perssoniella as an independent genus is untenable and we transfer it to the genus Schistochila. Our results indicate that Perssoniella vitreocincta is not an archaic species, as presupposed earlier. The differentiating characters in Perssoniella are mostly probably later derived, rather than ancestral. Our analyses also placed Pachyschistochila and Paraschistochila within Schistochila, again with strong support. We also transfer these two genera to Schistochila.


2008 ◽  
Vol 363 (1508) ◽  
pp. 3427-3437 ◽  
Author(s):  
Renae C Pratt ◽  
Mary Morgan-Richards ◽  
Steve A Trewick

New Zealand taxa from the Orthopteran family Anostostomatidae have been shown to consist of three broad groups, Hemiandrus (ground weta), Anisoura/Motuweta (tusked weta) and Hemideina – Deinacrida (tree–giant weta). The family is also present in Australia and New Caledonia, the nearest large land masses to New Zealand. All genera are endemic to their respective countries except Hemiandrus that occurs in New Zealand and Australia. We used nuclear and mitochondrial DNA sequence data to study within genera and among species-level genetic diversity within New Zealand and to examine phylogenetic relationships of taxa in Australasia. We found the Anostostomatidae to be monophyletic within Ensifera, and justifiably distinguished from the Stenopelmatidae among which they were formerly placed. However, the New Zealand Anostostomatidae are not monophyletic with respect to Australian and New Caledonian species in our analyses. Two of the New Zealand groups have closer allies in Australia and one in New Caledonia. We carried out maximum-likelihood and Bayesian analyses to reveal several well supported subgroupings. Our analysis included the most extensive sampling to date of Hemiandrus species and indicate that Australian and New Zealand Hemiandrus are not monophyletic. We used molecular dating approaches to test the plausibility of alternative biogeographic hypotheses for the origin of the New Zealand anostostomatid fauna and found support for divergence of the main clades at, or shortly after, Gondwanan break-up, and dispersal across the Tasman much more recently.


MycoKeys ◽  
2018 ◽  
Vol 40 ◽  
pp. 69-88 ◽  
Author(s):  
Sonja Kistenich ◽  
Jouko K. Rikkinen ◽  
Holger Thüs ◽  
Charles S. Vairappan ◽  
Patricia A. Wolseley ◽  
...  

Krogiaborneensis Kistenich & Timdal, K.isidiata Kistenich & Timdal and K.macrophylla Kistenich & Timdal are described as new species, the first from Borneo and the two latter from New Caledonia. The new species are supported by morphology, secondary chemistry and DNA sequence data. Krogiaborneensis and K.isidiata contain sekikaic and homosekikaic acid, both compounds reported here for the first time from the genus. Krogiamacrophylla contains an unknown compound apparently related to boninic acid as the major compound. DNA sequences (mtSSU and nrITS) are provided for the first time for Krogia and a phylogeny of the genus based on 15 accessions of five of the six accepted species is presented. Krogiaantillarum is reported as new to Brazil, Guatemala and Mexico.


2012 ◽  
Vol 43 (3-4) ◽  
pp. 175-212 ◽  
Author(s):  
Jakob Damgaard ◽  
Felipe Ferraz Figueiredo Moreira ◽  
Masakazu Hayashi ◽  
Tom A. Weir ◽  
Herbert Zettel

The phylogenetic relationships among selected species and genera of Mesoveliidae (Insecta: Hemiptera: Heteroptera: Gerromorpha) were investigated in a parsimony analysis of 2858 bp of DNA sequence data from the genes encoding COI + II, 16S rRNA and 28S rRNA. The resulting phylogeny showed that Mesoveloidea williamsiHungerford, 1929, from the subfamily Madeoveliinae, was sister group to Mniovelia Andersen & J.T. Polhemus, 1980, from the Mesoveliinae, thus making the latter subfamily paraphyletic. The genus MesoveliaMulsant & Rey, 1852 also showed to be paraphyletic, since an undescribed Laotian relative of M. indicaHorváth, 1915 and M. ujhelyiiLundblad, 1933 resulted as sister group to PhrynoveliaHorváth, 1915; and M. amoenaUhler, 1894 was sister species to Speovelia maritimaEsaki, 1929. Whereas these relationships were poorly or moderately supported, the remaining species of Mesovelia formed two distinct and well-supported clades, one comprising M. horvathiLundblad, 1933, M. hackeriHarris & Drake, 1941, and two undescribed species from Nigeria and New Caledonia, and another comprising M. vittigeraHorváth, 1895, M. stysi J.T. Polhemus & D.A. Polhemus, 2000, M. ebbenielseniAndersen & Weir, 2004, M. furcata Mulsant & Rey, 1952, and M. mulsantiWhite, 1879. A large genetic difference was found between populations of M. vittigera from Europe and Africa on one side and populations from Australia and New Caledonia on the other. DNA sequence data from a Japanese “M. vittigera” obtained from GenBank placed the specimen as strongly supported sister group to a Danish specimen of M. furcata. Comparisons of the 28S rRNA sequence data between the two specimens revealed a single C/T transition, while comparison with a Chinese female of M. furcata revealed one A/G and one C/T transition, thus suggesting mislabelling of the Japanese specimen, or an unrecognized presence of M. furcata in Japan. Considerable genetic differentiation was found between specimens of M. horvathi from Australia, New Caledonia, New Guinea, and Laos, and between sympatric specimens of M. mulsanti from Honduras, thus supporting earlier ideas of species-complexes in these two clades. Samples of Austrovelia caledonicaMalipatil & Monteith, 1983 from New Caledonia and Mniovelia kuscheli Andersen & J.T. Polhemus, 1980 from New Zealand’s North Island also revealed considerable intraspecific divergences indicating genetic isolation among geographically separated populations on these ancient islands.


Phytotaxa ◽  
2015 ◽  
Vol 226 (3) ◽  
pp. 201 ◽  
Author(s):  
HONG -YAN SU ◽  
Dhanushka Udayanga ◽  
Zong-long Luo ◽  
Dimuthu Manamgoda ◽  
Yong-Chang Zhao ◽  
...  

Aquatic hyphomycetes are a diverse, polyphyletic group of asexually reproducing fungi involved in the decomposition of litter in freshwater ecosystems. Curvularia eragrostidis, C. verruculosa and Phragmocephala atra were identified from submerged wood collected from freshwater streams in Yunnan Province, Southwestern China. They were characterised based on morphology and LSU, ITS and SSU sequence data. Phylogenetic analysis of LSU sequences placed the isolates within the order Pleosporales. Curvularia eragrostidis and C. verruculosa are reported from freshwater habitats for the first time. An epitype is designated for Curvularia verruculosa. This is the first phylogenetic placement of the genus Phragmocephala in the family Melanommataceae in Dothideomycetes, providing new DNA sequence data. A new species, Phragmocephala garethjonesii is introduced based on DNA sequence data and morphology. Descriptions and illustrations are provided for the species with notes on their taxonomy and phylogeny.


Phytotaxa ◽  
2018 ◽  
Vol 376 (6) ◽  
pp. 254 ◽  
Author(s):  
RATIDZAYI TAKAWIRA-NYENYA ◽  
LADISLAV MUCINA ◽  
WARREN M. CARDINAL-MCTEAGUE ◽  
KEVIN R. THIELE

The evolutionary history of the dracaenoid genera Dracaena and Sansevieria (Asparagaceae, Nolinoideae) remains poorly resolved, despite long-recognised issues with their generic boundaries and increased attention paid by both horticulturalists and taxonomists. In this study we aim to: (1) elucidate evolutionary relationships within and between Dracaena and Sansevieria using molecular phylogenetic inference of both nuclear (nDNA) and plastid (cpDNA) markers, (2) examine the infrageneric classifications of each genus, and (3) revise the circumscription of the dracaenoids in light of morphological and phylogenetic evidence. In total, we sampled 21 accessions of Dracaena (ca. 19 species), 27 accessions of Sansevieria (ca. 26 species), and six outgroup taxa. Phylogenetic analyses were based on nucleotide sequences of two non-coding plastid DNA regions, the trnL-F region (trnL intron and trnL-trnF intergenic spacer) and rps16 intron, and the low-copy nuclear region At103. Phylogenetic hypotheses were constructed using maximum parsimony, maximum likelihood, and Bayesian inference. Individual datasets were analysed separately and, after testing for congruence, as combined datasets. We recovered instances of soft incongruence between nDNA and cpDNA datasets in Sansevieria, but general trends in the dracaenoids were congruent, although often poorly supported or resolved. The dracaenoids constitute a strongly supported monophyletic group. Dracaena was resolved as a paraphyletic grade embedded with two clades of Sansevieria, a primary clade comprising most species, and a secondary clade including S. sambiranensis, a distinctive species from Madagascar. The backbone of our phylogeny was only resolved in nDNA analyses, but combined analyses recovered strongly supported species groups. None of the previous infrageneric classifications were supported by our phylogeny, and biogeographic groupings were frequently more significant than morphology. More work is needed to resolve internal relationships in the dracaenoids, but we support a recent proposal to recognise a broadened circumscription of Dracaena that includes Sansevieria. We provide a generic description for the recircumscribed Dracaena and new combinations for several species of Sansevieria in Dracaena.


2021 ◽  
Vol 20 (7) ◽  
pp. 911-927
Author(s):  
Lucia Muggia ◽  
Yu Quan ◽  
Cécile Gueidan ◽  
Abdullah M. S. Al-Hatmi ◽  
Martin Grube ◽  
...  

AbstractLichen thalli provide a long-lived and stable habitat for colonization by a wide range of microorganisms. Increased interest in these lichen-associated microbial communities has revealed an impressive diversity of fungi, including several novel lineages which still await formal taxonomic recognition. Among these, members of the Eurotiomycetes and Dothideomycetes usually occur asymptomatically in the lichen thalli, even if they share ancestry with fungi that may be parasitic on their host. Mycelia of the isolates are characterized by melanized cell walls and the fungi display exclusively asexual propagation. Their taxonomic placement requires, therefore, the use of DNA sequence data. Here, we consider recently published sequence data from lichen-associated fungi and characterize and formally describe two new, individually monophyletic lineages at family, genus, and species levels. The Pleostigmataceae fam. nov. and Melanina gen. nov. both comprise rock-inhabiting fungi that associate with epilithic, crust-forming lichens in subalpine habitats. The phylogenetic placement and the monophyly of Pleostigmataceae lack statistical support, but the family was resolved as sister to the order Verrucariales. This family comprises the species Pleostigma alpinum sp. nov., P. frigidum sp. nov., P. jungermannicola, and P. lichenophilum sp. nov. The placement of the genus Melanina is supported as a lineage within the Chaetothyriales. To date, this genus comprises the single species M. gunde-cimermaniae sp. nov. and forms a sister group to a large lineage including Herpotrichiellaceae, Chaetothyriaceae, Cyphellophoraceae, and Trichomeriaceae. The new phylogenetic analysis of the subclass Chaetothyiomycetidae provides new insight into genus and family level delimitation and classification of this ecologically diverse group of fungi.


Phytotaxa ◽  
2013 ◽  
Vol 146 (1) ◽  
pp. 1 ◽  
Author(s):  
PETER B. HEENAN ◽  
ROB D. SMISSEN

The generic taxonomy of the Nothofagaceae is revised. We present a new phylogenetic analysis of morphological characters and map these characters onto a recently published phylogenetic tree obtained from DNA sequence data. Results of these and previous analyses strongly support the monophyly of four clades of Nothofagaceae that are currently treated as subgenera of Nothofagus. The four clades of Nothofagaceae are robust and well-supported, with deep stem divergences, have evolutionary equivalence with other genera of Fagales, and can be circumscribed with morphological characters. We argue that these morphological and molecular differences are sufficient for the four clades of Nothofagaceae to be recognised at the primary rank of genus, and that this classification will be more informative and efficient than the currently circumscribed Nothofagus with four subgenera.        Nothofagus is recircumscribed to include five species from southern South America, Lophozonia and Trisyngyne are reinstated, and the new genus Fuscospora is described. Fuscospora and Lophozonia, with six and seven species respectively, occur in New Zealand, southern South America and Australia. Trisyngyne comprises 25 species from New Caledonia, Papua New Guinea and Indonesia. New combinations are provided where necessary in each of these genera.


2011 ◽  
Vol 43 (6) ◽  
pp. 561-567 ◽  
Author(s):  
K. PAPONG ◽  
G. KANTVILAS ◽  
H. T. LUMBSCH

AbstractThe phylogenetic placement of the genus Maronina was studied, based chiefly on phenotypic characters such as thallus colour and anatomy, secondary chemistry, the anatomy of the excipulum and the ascus-type. DNA sequence data of mitochondrial and nuclear ribosomal loci from some of the species support the hypothesis that Maronina is nested within Protoparmelia. Hence, Maronina is reduced to synonymy with Protoparmelia. Comparison of genetic distances suggests that the two varieties within M. orientalis should be regarded as distinct species. Consequently, the new combinations Protoparmelia australiensis (Hafellner & R. W. Rogers) Kantvilas et al., P. corallifera (Kantvilas & Papong) Kantvilas et al., P. hesperia (Kantvilas & Elix) Kantvilas et al., P. multifera (Nyl.) Kantvilas et al., and P. orientalis (Kantvilas & Papong) Kantvilas et al. are proposed.


2010 ◽  
Vol 100 (12) ◽  
pp. 1340-1351 ◽  
Author(s):  
Juan Moral ◽  
Concepción Muñoz-Díez ◽  
Nazaret González ◽  
Antonio Trapero ◽  
Themis J. Michailides

Species in the family Botryosphaeriaceae are common pathogens causing fruit rot and dieback of many woody plants. In this study, 150 Botryosphaeriaceae isolates were collected from olive and other hosts in Spain and California. Representative isolates of each type were characterized based on morphological features and comparisons of DNA sequence data of three regions: internal transcribed spacer 5.8S, β-tubulin, and elongation factor. Three main species were identified as Neofusicoccum mediterraneum, causing dieback of branches of olive and pistachio; Diplodia seriata, causing decay of ripe fruit and dieback of olive branches; and Botryosphaeria dothidea, causing dalmatian disease on unripe olive fruit in Spain. Moreover, the sexual stage of this last species was also found attacking olive branches in California. In pathogenicity tests using unripe fruit and branches of olive, D. seriata isolates were the least aggressive on the fruit and branches while N. mediterraneum isolates were the most aggressive on both tissues. Isolates of B. dothidea which cause dalmatian disease on fruit were not pathogenic on branches and only weakly aggressive on fruit. These results, together with the close association between the presence of dalmatian disease symptoms and the wound created by the olive fly (Bactrocera oleae), suggest that the fly is essential for the initiation of the disease on fruit. Isolates recovered from dalmatian disease symptoms had an optimum of 26°C for mycelial growth and 30°C for conidial germination, suggesting that the pathogen is well adapted to high summer temperatures. In contrast, the range of water activity in the medium for growth of dalmatian isolates was 0.93 to 1 MPa, which was similar to that for the majority of fungi. This study resolved long-standing questions of identity and pathogenicity of species within the family Botryosphaeriaceae attacking olive trees in Spain and California.


Sign in / Sign up

Export Citation Format

Share Document