Floral ontogeny of Illicium Lanceolatum (Schisandraceae) and its implications on carpel homology

Phytotaxa ◽  
2019 ◽  
Vol 416 (3) ◽  
pp. 200-210 ◽  
Author(s):  
XIN ZHANG ◽  
ZHIXIANG ZHANG ◽  
ZHONG ZHAO

There are two competing hypotheses for the origin of carpels. The traditional hypothesis favors a phyllosporous origin and regards a conduplicate carpel as an ancestral form that is the result of longitudinal folding of a leaf bearing ovules along its margins. Alternatively, the carpel formation is interpreted as the result of a fusion between an ovule-bearing branch and its subtending leaf-like structure. Illicium is a member of the Austrobaileyales, which are one of the three ANA lines that diverged before all other extant angiosperms. This genus with apocarpous gynoecium has various ancestral morphological characteristics in terms of carpel, ovule, and floral apex. Although various aspects of Illicium morphology have been previously investigated, many evolutionary characteristics remain poorly understood. In this study, the development of carpel, ovule, and floral apex of I. lanceolatum was studied using LM and SEM. The results showed that the ovule primordium originates in the axillary position between the flower axis and carpel wall. So the carpel of Illicium is a leaf-like structure that encircles the ovule. This kind of carpel favors the carpel as a result of fusion between two parts, ovule-bearing branch and its subtending leaf-like structure.

1969 ◽  
Vol 47 (7) ◽  
pp. 1067-1076 ◽  
Author(s):  
Siti Raswati Soetiarto ◽  
Ernest Ball

Floral apices at the stages of sepals, petals, stamens, upright carpels, and elevated carpels were bisected by microscalpels, and the regeneration of the meristem halves, their grafting together, and the production of new appendages were studied. At the sepal stage the two halves regenerated into twin flowers, producing petals, stamens, and carpels above the cut surfaces which grafted together. Cusick's finding that, for a particular organ to be formed alongside a wound, the incision must be made before organs of this kind have appeared in their normal positions, was supported. At the stage of petals, however, the twin flowers produced petals as the first new appendages above the cut surfaces. At the stage of stamens, the first appendages produced above the cut surfaces were carpels, again supporting Cusick. Sometimes the new carpels so formed constituted separate adjacent whorls on the twin flowers. At both stages of carpels, the rest of the floral apex (receptacle) showed no regeneration except rapidly grafting together. The reunited receptacle was then used as in normal ontogeny, in formation of carpel margins on which ovules would later have been borne. Generally, cells beneath wound surfaces showed few divisions, compared with the vigorous responses of bisected shoot apices of other plants. Grafting, which did not occur in the terminal regions of bisected shoot apices, readily occurred at cut surfaces of halved floral apices, and this latter response became progressively more rapid in later stages of floral ontogeny. This grafting, along with progressive loss of potential for production of new lateral appendages, are interpreted as manifestations of aging in this determinate meristem, and support the hypothesis that differentiation is concomitant with loss in capacity for growth.


1989 ◽  
Vol 67 (5) ◽  
pp. 1356-1365 ◽  
Author(s):  
Jean M. Gerrath ◽  
Usher Posluszny

The floral ontogeny of Parthenocissus inserta, based on histological and three-dimensional observations, is presented. The inflorescence primordium arises in a leaf-opposed position at two of three nodes. It becomes subtended by a bract, and then bifurcates equally to form a lateral and a main arm. Inflorescence branches are initiated on both arms to form a series of dichasia. The transition from inflorescence branch primordium to floral primordium is marked by the initiation of three sepal primordia. Subsequently a ring primordium forms as the fourth and fifth sepal primordia are initiated, resulting in a calyx which encircles the floral apex. Petals and stamens arise simultaneously as five common petal–stamen primordia, alternating with the sepals. They bifurcate to form separate petal and stamen primordia. The petals are greenish, valvate, hooded, and are separate at maturity. The tetrasporangiate anthers are introrse and pollen is tricolporate. The gynoecium arises as a ring primordium. Two septa arise from the inner gynoecial wall and the floral apex, and will eventually form an essentially two-loculed superior ovary. Two ovules are initiated from the base of each septum. Each of the four ovules is anatropous and bitegmic at maturity. A disc arises from the base of the gynoecium. It appears as five pinkish protuberances of the ovary base at maturity and secretes a nectarlike substance. The fruit is a one- to four-seeded blue-black berry.


Author(s):  
Louis P Ronse de Craene

Abstract This review based on a morphological and developmental perspective reveals a striking diversity in shapes and evolutionary trends in the gynoecium of core Caryophyllales that have affected the number of carpels, the formation of septa and the number of ovules. Two major developmental shifts are responsible for the diversity in gynoecial forms and are linked to the proportional development of carpellary tissue (ovary wall) and the floral apex. (1) Meristic change is caused by an expansion or reduction of the diameter of the floral apex. An expansion leads to polygyny linked with the development of more numerous small carpels; a reduction of space leads to lower carpel numbers, eventually resulting in a single carpel. (2) Different ovary shapes can be recognized at a mid-developmental stage predicting the further development of ovaries. With an equal growth of the ovary wall and floral apex, young ovaries take the shape of a salt-shaker; with more extensive development of the floral apex and delay of the ovary wall, a club-shaped ovary is formed; with faster growth of the ovary wall linked with intercalary expansion and a delayed growth of the floral apex, a (half-) inferior cup-shaped ovary develops. The different growth forms are the results of heterochronic shifts and affect the development of septa and ovule numbers. A common trend in the order implies a weakening and break-up of septa during development, leading to residual apical and basal septa and the shift to free-central and basal placentation. The club-shaped ovary is linked with an almost complete loss of septa and a reduction of the ovule number to one. The salt-shaker shape leads to ovaries with a massive placental column and several ovules. The cup-shaped ovary leads to a shift of ovules away from the floral apex. Developmental flexibility is responsible for a disconnection of carpel wall growth from ovular tissue. Subtle shifts in proportional growth lead to a high diversification of ovaries in core Caryophyllales and the establishment of predictable developmental trends. These trends clearly represent apomorphic tendencies, affecting different families of core Caryophyllales in different degrees. The ancestral gynoecium was probably pentamerous and isomerous with the other floral whorls, with ovules clearly separated from the carpellary wall and inserted on axile placentas corresponding to the central axis of the flower.


Author(s):  
M. J. Kramer ◽  
Alan L. Coykendall

During the almost 50 years since Streptococcus mutans was first suggested as a factor in the etiology of dental caries, a multitude of studies have confirmed the cariogenic potential of this organism. Streptococci have been isolated from human and animal caries on numerous occasions and, with few exceptions, they are not typable by the Lancefield technique but are relatively homogeneous in their biochemical reactions. An analysis of the guanine-cytosine (G-C) composition of the DNA from strains K-1-R, NCTC 10449, and FA-1 by one of us (ALC) revealed significant differences and DNA-DNA reassociation experiments indicated that genetic heterogeneity existed among the three strains. The present electron microscopic study had as its objective the elucidation of any distinguishing morphological characteristics which might further characterize the respective strains.


Author(s):  
N. Savage ◽  
A. Hackett

A cell line, UC1-B, which was derived from Balb/3T3 cells, maintains the same morphological characteristics of the non-transformed parental culture, and shows no evidence of spontaneous virus production. Survey by electron microscopy shows that the cell line consists of spindle-shaped cells with no unusual features and no endogenous virus particles.UC1-B cells respond to Moloney leukemia virus (MLV) infection by a change in morphology and growth pattern which is typical of cells transformed by sarcoma virus. Electron microscopy shows that the cells are now variable in shape (rounded, rhomboid, and spindle), and each cell type has some microvilli. Virtually all (90%) of the cells show virus particles developing at the cell surface and within the cytoplasm. Maturing viruses, typical of the oncogenic viruses, are found along with atypical tubular forms in the same cell.


Author(s):  
Anne F. Bushnell ◽  
Sarah Webster ◽  
Lynn S. Perlmutter

Apoptosis, or programmed cell death, is an important mechanism in development and in diverse disease states. The morphological characteristics of apoptosis were first identified using the electron microscope. Since then, DNA laddering on agarose gels was found to correlate well with apoptotic cell death in cultured cells of dissimilar origins. Recently numerous DNA nick end labeling methods have been developed in an attempt to visualize, at the light microscopic level, the apoptotic cells responsible for DNA laddering.The present studies were designed to compare various tissue processing techniques and staining methods to assess the occurrence of apoptosis in post mortem tissue from Alzheimer's diseased (AD) and control human brains by DNA nick end labeling methods. Three tissue preparation methods and two commercial DNA nick end labeling kits were evaluated: the Apoptag kit from Oncor and the Biotin-21 dUTP 3' end labeling kit from Clontech. The detection methods of the two kits differed in that the Oncor kit used digoxigenin dUTP and anti-digoxigenin-peroxidase and the Clontech used biotinylated dUTP and avidinperoxidase. Both used 3-3' diaminobenzidine (DAB) for final color development.


Author(s):  
Daryl A. Cornish ◽  
George L. Smit

Oreochromis mossambicus is currently receiving much attention as a candidater species for aquaculture programs within Southern Africa. This has stimulated interest in its breeding cycle as well as the morphological characteristics of the gonads. Limited information is available on SEM and TEM observations of the male gonads. It is known that the testis of O. mossambicus is a paired, intra-abdominal structure of the lobular type, although further details of its characteristics are not known. Current investigations have shown that spermatids reach full maturity some two months after the female becomes gravid. Throughout the year, the testes contain spermatids at various stages of development although spermiogenesis appears to be maximal during November when spawning occurs. This paper describes the morphological and ultrastructural characteristics of the testes and spermatids.Specimens of this fish were collected at Syferkuil Dam, 8 km north- west of the University of the North over a twelve month period, sacrificed and the testes excised.


Author(s):  
Barbara A. Wood

A controversial topic in the study of structure-property relationships of toughened polymer systems is the internal cavitation of toughener particles resulting from damage on impact or tensile deformation.Detailed observations of the influence of morphological characteristics such as particle size distribution on deformation mechanisms such as shear yield and cavitation could provide valuable guidance for selection of processing conditions, but TEM observation of damaged zones presents some experimental difficulties.Previously published TEM images of impact fractured toughened nylon show holes but contrast between matrix and toughener is lacking; other systems investigated have clearly shown cavitated impact modifier particles. In rubber toughened nylon, the physical characteristics of cavitated material differ from undamaged material to the extent that sectioning of heavily damaged regions by cryoultramicrotomy with a diamond knife results in sections of greater than optimum thickness (Figure 1). The detailed morphology is obscured despite selective staining of the rubber phase using the ruthenium trichloride route to ruthenium tetroxide.


Sign in / Sign up

Export Citation Format

Share Document