Plant diversity of Khuzestan and dust sources in the southwest of Iran, with a checklist of vascular plants

Phytotaxa ◽  
2020 ◽  
Vol 434 (3) ◽  
pp. 219-254
Author(s):  
MEHRI DINARVAND ◽  
ZIBA JAMZAD

Khuzestan province covers an area of 64236 square kilometers in the southwest of Iran and the border of Iraq. The area belongs to two regions, Irano-Turanian (IT) in the north and Sahara-Sindian in the south. An area with 349254 ha is the source of dust in Khuz province. We investigated the floristic composition, life-form spectrum and the phytogeography of the area during 2009–2018 by collecting vascular plants to provide an annotated checklist of the plants in Khuz province. In this time about two years focused on the vegetation of the septet areas of the source of dust and dune. Approximately 10,000 vascular plant specimens were collected from 13 types of terrestrial habitats and 15 types of wetlands. A total of 985 species and infraspecific taxa of vascular plants belonging to 487 genera and 93 plant families were recorded as native and naturalized in the study area. The richest families are Asteraceae (62 genera/132 species), Fabaceae (22/79), Poaceae (43/68), Brassicaceae (43/58), Lamiaceae (19/48), and Apiaceae (30/45). The genera Astragalus (20 species) and Convolvulus (14 species) are the most species-rich in Khuz. Raunkiaer’s plant life-form spectrum in the area is dominated by therophytes (33%) and hemicryptophytes (29%). The core flora of Khuz has the Irano-Turanian origin; the widespread elements are also well represented in the study area. The dust sources area includes four types of vegetation: wetland species, hygrophyte plants, terrestrial halophytes, and psammophytic plants. The main sources of dust rise are covered with two classes of vegetation (halophytes and pasmophytes), with 77 dune species, 43 species of salty soil places, and 28 species adapted to both climate and soil of the area.

Phytotaxa ◽  
2016 ◽  
Vol 249 (1) ◽  
pp. 118 ◽  
Author(s):  
FARSHID MEMARIANI ◽  
MOHAMMAD REZA JOHARCHI ◽  
HOSSEIN AKHANI

Ghorkhod Protected Area (GPA) is located in a transitional zone among different biogeographical units in North Khorassan Province, NE Iran. The study area is mainly a mountainous region in western extensions of Khorassan-Kopet Dagh floristic province. We investigated the floristic composition, life form spectrum and phytogeography of the study area through several random collection efforts and 200 vegetation samples (reléves) in selected vegetation types during 2007–2012. A total of 663 vascular plant species belonging to 367 genera and 81 families are recorded as native and naturalized in GPA. Angiosperms and Dicots are among the most diverse plant groups. The richest plant families are Asteraceae (88 species), Poaceae (78), Lamiaceae (45), Brassicaceae (43), Fabaceae (38), and Caryophyllaceae (32). The genera Allium L. (17 species), Astragalus L. (15) and Cousinia Cass. (12) are the richest ones, however, the majority of the species belongs to oligotypic and monotypic genera. Life form spectrum of the study area is dominated by hemicryptophytes (38.9%) and therophytes (23.4%). Allium transvestiens Vved., Agropyron desertorum Schult., Helictotrichon turcomanicum Czopanov and Piptatherum latifolium (Roshev.) Nevski are recorded as new to Iran. The core flora of the area has the Irano-Turanian origin. However, the wide-range and widespread elements are also well represented in the study area. GPA is inhabited by several endemic, rare and narrow-range plant species, indicating the biodiversity importance of the study area in NE Iran.


Phytotaxa ◽  
2018 ◽  
Vol 340 (2) ◽  
pp. 101 ◽  
Author(s):  
ZOHREH ATASHGAHI ◽  
HAMID EJTEHADI ◽  
MANSOOR MESDAGHI ◽  
FERESHTEH GHASSEMZADEH

Heydari Wildlife Refuge (HWR) is located in Binalood mountain range of the Razavi Khorassan Province in Northeastern Iran. The area belongs to the central part of Khorassan-Kopet Dagh floristic province, which is a transitional zone between different phytogeographical units in the Irano-Turanian region. We investigated the floristic composition, life-form spectrum and the phytogeography of the area during 2014–2017 by collecting vascular plants and establishing 443 random-quadrats in representative stands of different vegetation types. A total of 588 vascular plant taxa (species and subspecies) belonging to 304 genera and 65 families are recorded as native and naturalized in the study area. The richest plant families are Asteraceae (40 genera/87 species), Fabaceae (15/72), Poaceae (33/60), Brassicaceae (33/49), Lamiaceae (19/32), and Apiaceae (18/27). The genera Astragalus (44 species), Cousinia (17), and Allium (10) are the richest ones. However, the dominant canopy cover belongs to Acantholimon, Astragalus, Artemisia, and Acanthophyllum species. Raunkiaer’s plant life-form spectrum in the area is dominated by hemicryptophytes (41.50%) and therophytes (28.06%). The core flora of HWR has the Irano-Turanian origin; the widespread elements are also well represented in the study area. Based on the Sørensen dissimilarity index, the HWR has about 50% dissimilarity to the adjacent areas. The study area is inhabited by several Iranian and/or Khorassan-Kopet Dagh endemic (19%), threatened (16%), and narrow-range plant species. The results indicate the importance of the HWR in the plant diversity of NE Iran.


2018 ◽  
pp. 149-154

Vera Antonovna Martynenko (17.02.1936–06.01.2018) — famous specialist in the field of studying vascular plant flora and vegetation of the Far North, the Honored worker of the Komi Republic (2006), The Komi Republic State Scientific Award winner (2000). She was born in the town Likhoslavl of the Kali­nin (Tver) region. In 1959, Vera Antonovna graduated from the faculty of soil and biology of the Leningrad State University and then moved to the Komi Branch of USSR Academy of Science (Syktyvkar). From 1969 to 1973 she passed correspondence postgraduate courses of the Komi Branch of USSR Academy of ­Science. In 1974, she received the degree of candidate of biology (PhD) by the theme «Comparative analysis of the boreal flora at the Northeast European USSR» in the Botanical Institute (St. Petersburg). In 1996, Vera Antonovna received the degree of doctor of biology in the Institute of plant and animal ecology (Ekaterinburg) «Flora of the northern and mid subzones of the taiga of the European North-East». The study and conservation of species and coenotical diversity of the plant world, namely the vascular plants flora of the Komi Republic and revealing its transformation under the anthropogenic influence, was in the field of V. A. Martynenko’ scientific interests. She made great contribution to the study of the Komi Republic meadow flora and the pool of medi­cinal plants. She performed inventorying and mapping the meadows of several agricultural enterprises of the Republic, revealed the species composition and places for harvesting medicinal plants and studied their productivity in the natural flora of the boreal zone. The results of her long-term studies were used for making the NPA system and the Red Book of the Komi Republic (1998 and 2009). Vera Antonovna participated in the research of the influence of placer gold mining and oil development on the natural ecosystems of the North, and developed the method of long-term monitoring of plant cover. Results of these works are of high practical value. V. A. Martynenko is an author and coauthor of more than 130 scientific publications. The most important jnes are «Flora of Northeast European USSR» (1974, 1976, and 1977), «Floristic composition of fodder lands of the Northeast Europe» (1989), «The forests of the Komi Republic» (1999), «Forestry of forest resources of the Komi Republic» (2000), «The list of flora of the Yugyd va national park» (2003), «The guide for vascular plants of the Syktyvkar and its vicinities» (2005), «Vascular plants of the Komi Republic» (2008), and «Resources of the natural flora of the Komi Republic» (2014). She also was an author of «Encyclopedia of the Komi Republic» (1997, 1999, and 2000), «Historical and cultural atlas of the Komi Republic» (1997), «Atlas of the Komi Republic» (2001, 2011). V. A. Martynenko made a great contribution to the development of the botanical investigations in the North. Since 1982, during more than 10 years, she was the head of the Department of the Institute of Biology. Three Ph. D. theses have been completed under her leadership. Many years, she worked actively in the Dissertation Council of the Institute of biology Komi Scientific Centre UrB RAS.  The death of Vera Antonovna Martynenko is a heavy and irretrievable loss for the staff of the Institute of Biology. The memory of Vera Antonovna will live in her numerous scientific works, the hearts of students and colleagues.


2015 ◽  
Vol 129 (1) ◽  
pp. 24 ◽  
Author(s):  
Paul C. Sokoloff

New collections of vascular plants, bryophytes, lichen, and algae are reported for Cunningham Inlet on the north coast of Somerset Island, Nunavut. This list of 48 species of vascular plants, 13 bryophytes, 10 lichens, and five algae includes 136 specimens collected in 2013 and 39 previously unreported specimens from the National Herbarium of Canada at the Canadian Museum of Nature (CAN), Agriculture and Agri-Food Canada’s Vascular Plant Herbarium (DAO), and University of Alberta (ALTA). Ten vascular plants from previous collecting in 1958 are re-reported here to give a comprehensive account of the vascular plant flora of the region. Two vascular plants are recorded for the first time for Somerset Island: Smooth Draba (Draba glabella Pursh) and Edlund’s Fescue (Festuca edlundiae S. G. Aiken, Consaul & Lefkovitch).


2016 ◽  
Vol 5 (1) ◽  
pp. 29-45 ◽  
Author(s):  
Md Anwarul Islam ◽  
Mohammad Mahfuzur Rahman ◽  
Gazi Mosharof Hossain

The present study dealt with the exploration and documentation of the floristic composition and phyto-diversity of Sitakunda Eco-park, Chittagong, Bangladesh. A total of 412 vascular plant species under 315 genera belonging to 94 plant families have been recorded from the study area during February, 2013 to April, 2015. Out of these recorded taxa, 330 were dicotyledons, 62 were monocotyledons, 5 were gymnosperms and 15 were pteridophytes. Among those, the maximum 144 species belonged to herbs followed by 138, 75 and 55 species as trees, shrubs and climbers, respectively. The species composition among the plant families varied in plant groups. In dicotyledonous group, Euphorbiaceae appeared to be the largest family with 35 species, whereas Poaceae showed the largest family containing 30 species among monocotyledonous group. The highest values of both Shannon-Weiner and Simpson diversity indices have been observed as 3.82 and 0.98, respectively to site D during monsoon season, whereas the lowest values 3.19 and 0.95, respectively of these indices were recorded in site A during summer season.Jahangirnagar University J. Biol. Sci. 5(1): 29-45, 2016 (June)


1999 ◽  
Vol 47 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Eviatar Nevo ◽  
Ori Fragman ◽  
Amots Dafni ◽  
Avigdor Beiles

Species diversity of plants was recorded in 1992 and 1993 at seven stations of the “Evolution Canyon” microsite. Higher solar radiation on the South-Facing Slope (SFS) causes warm, xeric savannoid formation versus temperate, cool, mesic, dense maquis on the North-Facing Slope (NFS), and riverine, segetal plant formations on the Valley Bottom (VB). In an area of 7000 m2, we recorded 320 vascular plant species in 217 genera and 59 families. Plant cover varied from 35% (SFS) to 150% (NFS). Annuals predominated among all life forms (61.3% of all species). SFS and NFS varied in species content, sharing only 31–18% of species. Phytogeographical types varied among the two slopes and valley bottom. Inter-and intraslope species composition varied drastically due to differential microclimatic stresses, thereby demonstrating at a microscale natural selection in action.


Author(s):  
Mohammadreza Kavianpour ◽  
Mohammadreza Seyedabadi ◽  
Saber Moazami ◽  
Omid Aminoroayaie Yamini

In the past years, Khuzestan province which is located in the southwest of Iran has experienced severe droughts. Drought can be explained by its characteristics known as duration or severity. However, combination of the two features by probabilistic approach is appeared to be a well improved method to describe the phenomena. The aim of this study is to provide a more accurate statistical method of determining drought based on simultaneous analysis of two drought characteristics. Here, precipitation data from twenty stations were used to determine drought characteristics, by Standardized Precipitation Index (SPI). Joint probability function of two variables were built via copula functions. The drought return period was calculated in the form of two scenarios. The first scenario is, based on an assumption that drought is recognized by at least one of the two specific characteristics. Drought in the second scenario is distinguished by the two characteristics in a joint probabilistic form. According to research results, there was no significant difference between the north and south of Khuzestan in the study of single characteristics of drought. While analyzing two characteristics of the drought, the return period in the north was shorter than the south. The return period of droughts in the east was always shorter than in the west. The drought return period varies from 30 to 52 months and 50 to 87 months for the first and second scenarios, respectively.


1980 ◽  
Vol 58 (20) ◽  
pp. 2148-2170 ◽  
Author(s):  
Marianne G. See ◽  
L. C. Bliss

Alpine lichen-dominated vegetation is described with emphasis upon floristic composition, quantitative structure, and distribution of lichen communities. Macrolichens and vascular plants were quantitatively sampled using stratified random quadrats (10 cm × 40 cm) in 40 stands (30 m × 5 m) in west-central Alberta and north central Yukon Territory. Comparable acid and basic substrates, and glaciated and unglaciated sites were sampled in each region. Bray-Curtis and reciprocal averaging ordinations were used to analyze vegetation data. For both macrolichens and vascular plants, floristic similarity is greater within each region than on equivalent substrates in different regions. Three alpine macrolichen communities are described in each region which exhibit pronounced regional differences. Cetraria tilesii and Thamnolia subuliformis characterize driest sites in both regions, while Cetraria cucullata indicates mesic habitats. Cladonia spp. dominate acidic Yukon sites; Stereocaulon alpinum and Peltigera aphthosa characterize equivalent Alberta habitats. Vascular plant communities are dominated by Dryas integrifolia and D. octopetala in Alberta and Yukon areas, respectively, with dwarf willow and heath in acidic, mesic sites. Distribution of alpine communities of macrolichens and corresponding vascular plants is more strongly correlated with substate pH and moisture, than with glaciation history. Comparison with other northern studies suggests that these macrolichen communities may be found throughout the Canadian Cordillera where equivalent habitats are present.


Phytotaxa ◽  
2016 ◽  
Vol 250 (1) ◽  
pp. 1 ◽  
Author(s):  
YASMIN S. BAKSH-COMEAU ◽  
SHOBHA S. MAHARAJ ◽  
C. DENNIS ADAMS ◽  
STEPHEN A. HARRIS ◽  
DENIS L. FILER ◽  
...  

Although the publication of the vascular flora of the Caribbean islands of Trinidad and Tobago extended from 1928–1992, it is incomplete with the family Poaceae still outstanding. Many of the early recorded families are in need of extensive revision. Therefore, this checklist is intended to fill these gaps by providing a comprehensive list of the vascular plants for the islands. We compiled the checklist using the results from herbarium records, literature citations, online resources and a Rapid Botanic Survey (RBS) of 240 sample plots across the islands. From the RBS plots 22,500 vascular plant specimens were collected, yielding 1530 species. The herbarium records, literature citations and the RBS plots yielded a total of 3639 species, of which 2407 are indigenous, 1222 are exotic and 108 are endemic or near endemic. The low endemism is attributed to the islands’ close proximity to and recent separation from the South American continent. A total of 262 species of grasses (Poaceae) is published here for the first time along with the results from the RBS plots. Our annotated checklist further presents two types of conservation rating: the International Union for the Conservation of Nature Red List Categories and a global Star rating system. Based on the clustering of the ‘Star rating’ of each species, plant communities in the following areas: the Heights of Aripo, parts of the Nariva Swamp and the North-west Islands were identified as ‘hot spots’ of high conservation value which should continue to, or receive greater protection in the National Parks and Protected Areas system established in Trinidad and Tobago.


Sign in / Sign up

Export Citation Format

Share Document